MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfi Structured version   Visualization version   GIF version

Theorem cusgrfi 29422
Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrfi ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)

Proof of Theorem cusgrfi
Dummy variables 𝑛 𝑝 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfielex 9176 . . . . 5 𝑉 ∈ Fin → ∃𝑛 𝑛𝑉)
2 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 eqeq1 2733 . . . . . . . . . . . 12 (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛}))
43anbi2d 630 . . . . . . . . . . 11 (𝑒 = 𝑝 → ((𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ (𝑣𝑛𝑝 = {𝑣, 𝑛})))
54rexbidv 3153 . . . . . . . . . 10 (𝑒 = 𝑝 → (∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})))
65cbvrabv 3407 . . . . . . . . 9 {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})}
7 eqid 2729 . . . . . . . . 9 (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛})
82, 6, 7cusgrfilem3 29421 . . . . . . . 8 (𝑛𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
98notbid 318 . . . . . . 7 (𝑛𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
109biimpac 478 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
112, 6cusgrfilem1 29419 . . . . . . . . . 10 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺))
12 cusgrfi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
1312eleq1i 2819 . . . . . . . . . . . 12 (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin)
14 ssfi 9097 . . . . . . . . . . . . 13 (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
1514expcom 413 . . . . . . . . . . . 12 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1613, 15biimtrid 242 . . . . . . . . . . 11 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1716con3d 152 . . . . . . . . . 10 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1811, 17syl 17 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1918expcom 413 . . . . . . . 8 (𝑛𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)))
2019com23 86 . . . . . . 7 (𝑛𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2120adantl 481 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2210, 21mpd 15 . . . . 5 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
231, 22exlimddv 1935 . . . 4 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
2423com12 32 . . 3 (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin))
2524con4d 115 . 2 (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin))
2625imp 406 1 ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396  cdif 3902  wss 3905  𝒫 cpw 4553  {csn 4579  {cpr 4581  cmpt 5176  cfv 6486  Fincfn 8879  Vtxcvtx 28959  Edgcedg 29010  ComplUSGraphccusgr 29373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-edg 29011  df-upgr 29045  df-umgr 29046  df-usgr 29114  df-nbgr 29296  df-uvtx 29349  df-cplgr 29374  df-cusgr 29375
This theorem is referenced by:  sizusglecusglem2  29426
  Copyright terms: Public domain W3C validator