![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrfi | Structured version Visualization version GIF version |
Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
cusgrfi | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfielex 9305 | . . . . 5 ⊢ (¬ 𝑉 ∈ Fin → ∃𝑛 𝑛 ∈ 𝑉) | |
2 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | eqeq1 2739 | . . . . . . . . . . . 12 ⊢ (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛})) | |
4 | 3 | anbi2d 630 | . . . . . . . . . . 11 ⊢ (𝑒 = 𝑝 → ((𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
5 | 4 | rexbidv 3177 | . . . . . . . . . 10 ⊢ (𝑒 = 𝑝 → (∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
6 | 5 | cbvrabv 3444 | . . . . . . . . 9 ⊢ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛})} |
7 | eqid 2735 | . . . . . . . . 9 ⊢ (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) | |
8 | 2, 6, 7 | cusgrfilem3 29490 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
9 | 8 | notbid 318 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
10 | 9 | biimpac 478 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) |
11 | 2, 6 | cusgrfilem1 29488 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) |
12 | cusgrfi.e | . . . . . . . . . . . . 13 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 12 | eleq1i 2830 | . . . . . . . . . . . 12 ⊢ (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin) |
14 | ssfi 9212 | . . . . . . . . . . . . 13 ⊢ (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) | |
15 | 14 | expcom 413 | . . . . . . . . . . . 12 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
16 | 13, 15 | biimtrid 242 | . . . . . . . . . . 11 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
17 | 16 | con3d 152 | . . . . . . . . . 10 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
18 | 11, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
19 | 18 | expcom 413 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))) |
20 | 19 | com23 86 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
22 | 10, 21 | mpd 15 | . . . . 5 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
23 | 1, 22 | exlimddv 1933 | . . . 4 ⊢ (¬ 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
24 | 23 | com12 32 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin)) |
25 | 24 | con4d 115 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin)) |
26 | 25 | imp 406 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ∖ cdif 3960 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 {cpr 4633 ↦ cmpt 5231 ‘cfv 6563 Fincfn 8984 Vtxcvtx 29028 Edgcedg 29079 ComplUSGraphccusgr 29442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 df-edg 29080 df-upgr 29114 df-umgr 29115 df-usgr 29183 df-nbgr 29365 df-uvtx 29418 df-cplgr 29443 df-cusgr 29444 |
This theorem is referenced by: sizusglecusglem2 29495 |
Copyright terms: Public domain | W3C validator |