Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrfi | Structured version Visualization version GIF version |
Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
cusgrfi | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfielex 8976 | . . . . 5 ⊢ (¬ 𝑉 ∈ Fin → ∃𝑛 𝑛 ∈ 𝑉) | |
2 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | eqeq1 2742 | . . . . . . . . . . . 12 ⊢ (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛})) | |
4 | 3 | anbi2d 628 | . . . . . . . . . . 11 ⊢ (𝑒 = 𝑝 → ((𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
5 | 4 | rexbidv 3225 | . . . . . . . . . 10 ⊢ (𝑒 = 𝑝 → (∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
6 | 5 | cbvrabv 3416 | . . . . . . . . 9 ⊢ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛})} |
7 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) | |
8 | 2, 6, 7 | cusgrfilem3 27727 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
9 | 8 | notbid 317 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
10 | 9 | biimpac 478 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) |
11 | 2, 6 | cusgrfilem1 27725 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) |
12 | cusgrfi.e | . . . . . . . . . . . . 13 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 12 | eleq1i 2829 | . . . . . . . . . . . 12 ⊢ (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin) |
14 | ssfi 8918 | . . . . . . . . . . . . 13 ⊢ (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) | |
15 | 14 | expcom 413 | . . . . . . . . . . . 12 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
16 | 13, 15 | syl5bi 241 | . . . . . . . . . . 11 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
17 | 16 | con3d 152 | . . . . . . . . . 10 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
18 | 11, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
19 | 18 | expcom 413 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))) |
20 | 19 | com23 86 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
22 | 10, 21 | mpd 15 | . . . . 5 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
23 | 1, 22 | exlimddv 1939 | . . . 4 ⊢ (¬ 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
24 | 23 | com12 32 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin)) |
25 | 24 | con4d 115 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin)) |
26 | 25 | imp 406 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 {cpr 4560 ↦ cmpt 5153 ‘cfv 6418 Fincfn 8691 Vtxcvtx 27269 Edgcedg 27320 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-edg 27321 df-upgr 27355 df-umgr 27356 df-usgr 27424 df-nbgr 27603 df-uvtx 27656 df-cplgr 27681 df-cusgr 27682 |
This theorem is referenced by: sizusglecusglem2 27732 |
Copyright terms: Public domain | W3C validator |