| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrfi | Structured version Visualization version GIF version | ||
| Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrfi | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfielex 9225 | . . . . 5 ⊢ (¬ 𝑉 ∈ Fin → ∃𝑛 𝑛 ∈ 𝑉) | |
| 2 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | eqeq1 2734 | . . . . . . . . . . . 12 ⊢ (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛})) | |
| 4 | 3 | anbi2d 630 | . . . . . . . . . . 11 ⊢ (𝑒 = 𝑝 → ((𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
| 5 | 4 | rexbidv 3158 | . . . . . . . . . 10 ⊢ (𝑒 = 𝑝 → (∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
| 6 | 5 | cbvrabv 3419 | . . . . . . . . 9 ⊢ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛})} |
| 7 | eqid 2730 | . . . . . . . . 9 ⊢ (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) | |
| 8 | 2, 6, 7 | cusgrfilem3 29392 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
| 9 | 8 | notbid 318 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
| 10 | 9 | biimpac 478 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) |
| 11 | 2, 6 | cusgrfilem1 29390 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) |
| 12 | cusgrfi.e | . . . . . . . . . . . . 13 ⊢ 𝐸 = (Edg‘𝐺) | |
| 13 | 12 | eleq1i 2820 | . . . . . . . . . . . 12 ⊢ (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin) |
| 14 | ssfi 9143 | . . . . . . . . . . . . 13 ⊢ (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) | |
| 15 | 14 | expcom 413 | . . . . . . . . . . . 12 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
| 16 | 13, 15 | biimtrid 242 | . . . . . . . . . . 11 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
| 17 | 16 | con3d 152 | . . . . . . . . . 10 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
| 18 | 11, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
| 19 | 18 | expcom 413 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))) |
| 20 | 19 | com23 86 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
| 22 | 10, 21 | mpd 15 | . . . . 5 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
| 23 | 1, 22 | exlimddv 1935 | . . . 4 ⊢ (¬ 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
| 24 | 23 | com12 32 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin)) |
| 25 | 24 | con4d 115 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin)) |
| 26 | 25 | imp 406 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∖ cdif 3914 ⊆ wss 3917 𝒫 cpw 4566 {csn 4592 {cpr 4594 ↦ cmpt 5191 ‘cfv 6514 Fincfn 8921 Vtxcvtx 28930 Edgcedg 28981 ComplUSGraphccusgr 29344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-edg 28982 df-upgr 29016 df-umgr 29017 df-usgr 29085 df-nbgr 29267 df-uvtx 29320 df-cplgr 29345 df-cusgr 29346 |
| This theorem is referenced by: sizusglecusglem2 29397 |
| Copyright terms: Public domain | W3C validator |