![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrfi | Structured version Visualization version GIF version |
Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
cusgrfi | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfielex 9307 | . . . . 5 ⊢ (¬ 𝑉 ∈ Fin → ∃𝑛 𝑛 ∈ 𝑉) | |
2 | cusgrfi.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | eqeq1 2730 | . . . . . . . . . . . 12 ⊢ (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛})) | |
4 | 3 | anbi2d 628 | . . . . . . . . . . 11 ⊢ (𝑒 = 𝑝 → ((𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
5 | 4 | rexbidv 3169 | . . . . . . . . . 10 ⊢ (𝑒 = 𝑝 → (∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛}))) |
6 | 5 | cbvrabv 3430 | . . . . . . . . 9 ⊢ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑝 = {𝑣, 𝑛})} |
7 | eqid 2726 | . . . . . . . . 9 ⊢ (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) | |
8 | 2, 6, 7 | cusgrfilem3 29394 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
9 | 8 | notbid 317 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
10 | 9 | biimpac 477 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) |
11 | 2, 6 | cusgrfilem1 29392 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) |
12 | cusgrfi.e | . . . . . . . . . . . . 13 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 12 | eleq1i 2817 | . . . . . . . . . . . 12 ⊢ (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin) |
14 | ssfi 9211 | . . . . . . . . . . . . 13 ⊢ (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin) | |
15 | 14 | expcom 412 | . . . . . . . . . . . 12 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
16 | 13, 15 | biimtrid 241 | . . . . . . . . . . 11 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin)) |
17 | 16 | con3d 152 | . . . . . . . . . 10 ⊢ ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
18 | 11, 17 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)) |
19 | 18 | expcom 412 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))) |
20 | 19 | com23 86 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
21 | 20 | adantl 480 | . . . . . 6 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣 ∈ 𝑉 (𝑣 ≠ 𝑛 ∧ 𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))) |
22 | 10, 21 | mpd 15 | . . . . 5 ⊢ ((¬ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
23 | 1, 22 | exlimddv 1931 | . . . 4 ⊢ (¬ 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)) |
24 | 23 | com12 32 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin)) |
25 | 24 | con4d 115 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin)) |
26 | 25 | imp 405 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 {crab 3419 ∖ cdif 3944 ⊆ wss 3947 𝒫 cpw 4607 {csn 4633 {cpr 4635 ↦ cmpt 5236 ‘cfv 6554 Fincfn 8974 Vtxcvtx 28932 Edgcedg 28983 ComplUSGraphccusgr 29346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12597 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 df-edg 28984 df-upgr 29018 df-umgr 29019 df-usgr 29087 df-nbgr 29269 df-uvtx 29322 df-cplgr 29347 df-cusgr 29348 |
This theorem is referenced by: sizusglecusglem2 29399 |
Copyright terms: Public domain | W3C validator |