MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfi Structured version   Visualization version   GIF version

Theorem cusgrfi 29491
Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrfi ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)

Proof of Theorem cusgrfi
Dummy variables 𝑛 𝑝 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfielex 9305 . . . . 5 𝑉 ∈ Fin → ∃𝑛 𝑛𝑉)
2 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 eqeq1 2739 . . . . . . . . . . . 12 (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛}))
43anbi2d 630 . . . . . . . . . . 11 (𝑒 = 𝑝 → ((𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ (𝑣𝑛𝑝 = {𝑣, 𝑛})))
54rexbidv 3177 . . . . . . . . . 10 (𝑒 = 𝑝 → (∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})))
65cbvrabv 3444 . . . . . . . . 9 {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})}
7 eqid 2735 . . . . . . . . 9 (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛})
82, 6, 7cusgrfilem3 29490 . . . . . . . 8 (𝑛𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
98notbid 318 . . . . . . 7 (𝑛𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
109biimpac 478 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
112, 6cusgrfilem1 29488 . . . . . . . . . 10 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺))
12 cusgrfi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
1312eleq1i 2830 . . . . . . . . . . . 12 (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin)
14 ssfi 9212 . . . . . . . . . . . . 13 (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
1514expcom 413 . . . . . . . . . . . 12 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1613, 15biimtrid 242 . . . . . . . . . . 11 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1716con3d 152 . . . . . . . . . 10 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1811, 17syl 17 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1918expcom 413 . . . . . . . 8 (𝑛𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)))
2019com23 86 . . . . . . 7 (𝑛𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2120adantl 481 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2210, 21mpd 15 . . . . 5 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
231, 22exlimddv 1933 . . . 4 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
2423com12 32 . . 3 (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin))
2524con4d 115 . 2 (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin))
2625imp 406 1 ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  cdif 3960  wss 3963  𝒫 cpw 4605  {csn 4631  {cpr 4633  cmpt 5231  cfv 6563  Fincfn 8984  Vtxcvtx 29028  Edgcedg 29079  ComplUSGraphccusgr 29442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365  df-uvtx 29418  df-cplgr 29443  df-cusgr 29444
This theorem is referenced by:  sizusglecusglem2  29495
  Copyright terms: Public domain W3C validator