MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfi Structured version   Visualization version   GIF version

Theorem cusgrfi 29476
Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrfi ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)

Proof of Theorem cusgrfi
Dummy variables 𝑛 𝑝 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfielex 9307 . . . . 5 𝑉 ∈ Fin → ∃𝑛 𝑛𝑉)
2 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 eqeq1 2741 . . . . . . . . . . . 12 (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛}))
43anbi2d 630 . . . . . . . . . . 11 (𝑒 = 𝑝 → ((𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ (𝑣𝑛𝑝 = {𝑣, 𝑛})))
54rexbidv 3179 . . . . . . . . . 10 (𝑒 = 𝑝 → (∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})))
65cbvrabv 3447 . . . . . . . . 9 {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})}
7 eqid 2737 . . . . . . . . 9 (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛})
82, 6, 7cusgrfilem3 29475 . . . . . . . 8 (𝑛𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
98notbid 318 . . . . . . 7 (𝑛𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
109biimpac 478 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
112, 6cusgrfilem1 29473 . . . . . . . . . 10 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺))
12 cusgrfi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
1312eleq1i 2832 . . . . . . . . . . . 12 (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin)
14 ssfi 9213 . . . . . . . . . . . . 13 (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
1514expcom 413 . . . . . . . . . . . 12 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1613, 15biimtrid 242 . . . . . . . . . . 11 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1716con3d 152 . . . . . . . . . 10 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1811, 17syl 17 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1918expcom 413 . . . . . . . 8 (𝑛𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)))
2019com23 86 . . . . . . 7 (𝑛𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2120adantl 481 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2210, 21mpd 15 . . . . 5 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
231, 22exlimddv 1935 . . . 4 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
2423com12 32 . . 3 (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin))
2524con4d 115 . 2 (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin))
2625imp 406 1 ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  cdif 3948  wss 3951  𝒫 cpw 4600  {csn 4626  {cpr 4628  cmpt 5225  cfv 6561  Fincfn 8985  Vtxcvtx 29013  Edgcedg 29064  ComplUSGraphccusgr 29427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-edg 29065  df-upgr 29099  df-umgr 29100  df-usgr 29168  df-nbgr 29350  df-uvtx 29403  df-cplgr 29428  df-cusgr 29429
This theorem is referenced by:  sizusglecusglem2  29480
  Copyright terms: Public domain W3C validator