Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > decsmflem | Structured version Visualization version GIF version |
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
decsmflem.x | ⊢ Ⅎ𝑥𝜑 |
decsmflem.y | ⊢ Ⅎ𝑦𝜑 |
decsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
decsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
decsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
decsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
decsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
decsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
decsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} |
decsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
decsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
decsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
Ref | Expression |
---|---|
decsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
2 | mnfxr 10963 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
4 | decsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
5 | ssrab2 4009 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3951 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
8 | decsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 7, 8 | sstrd 3927 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
10 | 9 | sselda 3917 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
11 | decsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | decsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
13 | 3, 10, 11, 12 | iocborel 43785 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
14 | 1, 13 | eqeltrid 2843 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
15 | decsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
16 | decsmflem.c | . . . . . . 7 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
17 | nfrab1 3310 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
18 | 4, 17 | nfcxfr 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 |
19 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑥ℝ* | |
20 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑥 < | |
21 | 18, 19, 20 | nfsup 9140 | . . . . . . 7 ⊢ Ⅎ𝑥sup(𝑌, ℝ*, < ) |
22 | 16, 21 | nfcxfr 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 |
23 | 22, 18 | nfel 2920 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
24 | 15, 23 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
25 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
26 | decsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
28 | decsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) | |
29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
30 | decsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
33 | 24, 25, 27, 29, 31, 4, 16, 32, 1 | pimdecfgtioc 44139 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
34 | ineq1 4136 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
35 | 34 | rspceeqv 3567 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
36 | 14, 33, 35 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
37 | decsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
38 | 11, 12 | iooborel 43780 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
39 | 37, 38 | eqeltri 2835 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
42 | 23 | nfn 1861 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
43 | 15, 42 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
44 | decsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
45 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
46 | 44, 45 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
47 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
48 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
49 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
50 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
51 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
52 | 43, 46, 47, 48, 49, 50, 4, 16, 51, 37 | pimdecfgtioo 44141 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
53 | ineq1 4136 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
54 | 53 | rspceeqv 3567 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
55 | 41, 52, 54 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
56 | 36, 55 | pm2.61dan 809 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℝcr 10801 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 (,)cioo 13008 (,]cioc 13009 topGenctg 17065 SalGencsalgen 43743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-ioo 13012 df-ioc 13013 df-fl 13440 df-topgen 17071 df-top 21951 df-bases 22004 df-salg 43740 df-salgen 43744 |
This theorem is referenced by: decsmf 44189 |
Copyright terms: Public domain | W3C validator |