Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmflem Structured version   Visualization version   GIF version

Theorem decsmflem 43190
 Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmflem.x 𝑥𝜑
decsmflem.y 𝑦𝜑
decsmflem.a (𝜑𝐴 ⊆ ℝ)
decsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
decsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmflem.j 𝐽 = (topGen‘ran (,))
decsmflem.b 𝐵 = (SalGen‘𝐽)
decsmflem.r (𝜑𝑅 ∈ ℝ*)
decsmflem.l 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
decsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
decsmflem.d 𝐷 = (-∞(,)𝐶)
decsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
decsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑦,𝐶   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑏)   𝑅(𝑏)   𝐸(𝑦)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem decsmflem
StepHypRef Expression
1 decsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 10675 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 decsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
5 ssrab2 4032 . . . . . . . . 9 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
64, 5eqsstri 3977 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 decsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 3953 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 3943 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 decsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 decsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 42787 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13eqeltrid 2916 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 decsmflem.x . . . . 5 𝑥𝜑
16 decsmflem.c . . . . . . 7 𝐶 = sup(𝑌, ℝ*, < )
17 nfrab1 3369 . . . . . . . . 9 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
184, 17nfcxfr 2972 . . . . . . . 8 𝑥𝑌
19 nfcv 2974 . . . . . . . 8 𝑥*
20 nfcv 2974 . . . . . . . 8 𝑥 <
2118, 19, 20nfsup 8891 . . . . . . 7 𝑥sup(𝑌, ℝ*, < )
2216, 21nfcxfr 2972 . . . . . 6 𝑥𝐶
2322, 18nfel 2988 . . . . 5 𝑥 𝐶𝑌
2415, 23nfan 1901 . . . 4 𝑥(𝜑𝐶𝑌)
258adantr 484 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
26 decsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2726adantr 484 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
28 decsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
2928adantr 484 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
30 decsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3130adantr 484 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
32 simpr 488 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3324, 25, 27, 29, 31, 4, 16, 32, 1pimdecfgtioc 43141 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 4156 . . . 4 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534rspceeqv 3615 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3614, 33, 35syl2anc 587 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
37 decsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3811, 12iooborel 42782 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
3937, 38eqeltri 2908 . . . . 5 𝐷𝐵
4039a1i 11 . . . 4 (𝜑𝐷𝐵)
4140adantr 484 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4223nfn 1858 . . . . 5 𝑥 ¬ 𝐶𝑌
4315, 42nfan 1901 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
44 decsmflem.y . . . . 5 𝑦𝜑
45 nfv 1916 . . . . 5 𝑦 ¬ 𝐶𝑌
4644, 45nfan 1901 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
478adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4826adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4928adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
5030adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
51 simpr 488 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5243, 46, 47, 48, 49, 50, 4, 16, 51, 37pimdecfgtioo 43143 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
53 ineq1 4156 . . . 4 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5453rspceeqv 3615 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5541, 52, 54syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5636, 55pm2.61dan 812 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2115  ∀wral 3126  ∃wrex 3127  {crab 3130   ∩ cin 3909   ⊆ wss 3910   class class class wbr 5039  ran crn 5529  ⟶wf 6324  ‘cfv 6328  (class class class)co 7130  supcsup 8880  ℝcr 10513  -∞cmnf 10650  ℝ*cxr 10651   < clt 10652   ≤ cle 10653  (,)cioo 12716  (,]cioc 12717  topGenctg 16689  SalGencsalgen 42745 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-card 9344  df-acn 9347  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-rp 12368  df-ioo 12720  df-ioc 12721  df-fl 13145  df-topgen 16695  df-top 21477  df-bases 21529  df-salg 42742  df-salgen 42746 This theorem is referenced by:  decsmf  43191
 Copyright terms: Public domain W3C validator