![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > decsmflem | Structured version Visualization version GIF version |
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
decsmflem.x | ⊢ Ⅎ𝑥𝜑 |
decsmflem.y | ⊢ Ⅎ𝑦𝜑 |
decsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
decsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
decsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
decsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
decsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
decsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
decsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} |
decsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
decsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
decsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
Ref | Expression |
---|---|
decsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
2 | mnfxr 11212 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
4 | decsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
5 | ssrab2 4037 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3978 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
8 | decsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 7, 8 | sstrd 3954 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
10 | 9 | sselda 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
11 | decsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | decsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
13 | 3, 10, 11, 12 | iocborel 44587 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
14 | 1, 13 | eqeltrid 2842 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
15 | decsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
16 | decsmflem.c | . . . . . . 7 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
17 | nfrab1 3426 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
18 | 4, 17 | nfcxfr 2905 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 |
19 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥ℝ* | |
20 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥 < | |
21 | 18, 19, 20 | nfsup 9387 | . . . . . . 7 ⊢ Ⅎ𝑥sup(𝑌, ℝ*, < ) |
22 | 16, 21 | nfcxfr 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 |
23 | 22, 18 | nfel 2921 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
24 | 15, 23 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
25 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
26 | decsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
27 | 26 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
28 | decsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) | |
29 | 28 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
30 | decsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
31 | 30 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
32 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
33 | 24, 25, 27, 29, 31, 4, 16, 32, 1 | pimdecfgtioc 44946 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
34 | ineq1 4165 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
35 | 34 | rspceeqv 3595 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
36 | 14, 33, 35 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
37 | decsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
38 | 11, 12 | iooborel 44582 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
39 | 37, 38 | eqeltri 2834 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
41 | 40 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
42 | 23 | nfn 1860 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
43 | 15, 42 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
44 | decsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
45 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
46 | 44, 45 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
47 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
48 | 26 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
49 | 28 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
50 | 30 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
51 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
52 | 43, 46, 47, 48, 49, 50, 4, 16, 51, 37 | pimdecfgtioo 44948 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
53 | ineq1 4165 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
54 | 53 | rspceeqv 3595 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
55 | 41, 52, 54 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
56 | 36, 55 | pm2.61dan 811 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 {crab 3407 ∩ cin 3909 ⊆ wss 3910 class class class wbr 5105 ran crn 5634 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 supcsup 9376 ℝcr 11050 -∞cmnf 11187 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 (,)cioo 13264 (,]cioc 13265 topGenctg 17319 SalGencsalgen 44543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-inf 9379 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-ioo 13268 df-ioc 13269 df-fl 13697 df-topgen 17325 df-top 22243 df-bases 22296 df-salg 44540 df-salgen 44544 |
This theorem is referenced by: decsmf 44998 |
Copyright terms: Public domain | W3C validator |