Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmflem Structured version   Visualization version   GIF version

Theorem decsmflem 43399
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmflem.x 𝑥𝜑
decsmflem.y 𝑦𝜑
decsmflem.a (𝜑𝐴 ⊆ ℝ)
decsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
decsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmflem.j 𝐽 = (topGen‘ran (,))
decsmflem.b 𝐵 = (SalGen‘𝐽)
decsmflem.r (𝜑𝑅 ∈ ℝ*)
decsmflem.l 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
decsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
decsmflem.d 𝐷 = (-∞(,)𝐶)
decsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
decsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑦,𝐶   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑏)   𝑅(𝑏)   𝐸(𝑦)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem decsmflem
StepHypRef Expression
1 decsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 10687 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 decsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
5 ssrab2 4007 . . . . . . . . 9 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
64, 5eqsstri 3949 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 decsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 3925 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 3915 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 decsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 decsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 42996 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13eqeltrid 2894 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 decsmflem.x . . . . 5 𝑥𝜑
16 decsmflem.c . . . . . . 7 𝐶 = sup(𝑌, ℝ*, < )
17 nfrab1 3337 . . . . . . . . 9 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
184, 17nfcxfr 2953 . . . . . . . 8 𝑥𝑌
19 nfcv 2955 . . . . . . . 8 𝑥*
20 nfcv 2955 . . . . . . . 8 𝑥 <
2118, 19, 20nfsup 8899 . . . . . . 7 𝑥sup(𝑌, ℝ*, < )
2216, 21nfcxfr 2953 . . . . . 6 𝑥𝐶
2322, 18nfel 2969 . . . . 5 𝑥 𝐶𝑌
2415, 23nfan 1900 . . . 4 𝑥(𝜑𝐶𝑌)
258adantr 484 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
26 decsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2726adantr 484 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
28 decsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
2928adantr 484 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
30 decsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3130adantr 484 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
32 simpr 488 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3324, 25, 27, 29, 31, 4, 16, 32, 1pimdecfgtioc 43350 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 4131 . . . 4 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534rspceeqv 3586 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3614, 33, 35syl2anc 587 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
37 decsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3811, 12iooborel 42991 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
3937, 38eqeltri 2886 . . . . 5 𝐷𝐵
4039a1i 11 . . . 4 (𝜑𝐷𝐵)
4140adantr 484 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4223nfn 1858 . . . . 5 𝑥 ¬ 𝐶𝑌
4315, 42nfan 1900 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
44 decsmflem.y . . . . 5 𝑦𝜑
45 nfv 1915 . . . . 5 𝑦 ¬ 𝐶𝑌
4644, 45nfan 1900 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
478adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4826adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4928adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
5030adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
51 simpr 488 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5243, 46, 47, 48, 49, 50, 4, 16, 51, 37pimdecfgtioo 43352 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
53 ineq1 4131 . . . 4 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5453rspceeqv 3586 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5541, 52, 54syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5636, 55pm2.61dan 812 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  wrex 3107  {crab 3110  cin 3880  wss 3881   class class class wbr 5030  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  supcsup 8888  cr 10525  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  (,]cioc 12727  topGenctg 16703  SalGencsalgen 42954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ioc 12731  df-fl 13157  df-topgen 16709  df-top 21499  df-bases 21551  df-salg 42951  df-salgen 42955
This theorem is referenced by:  decsmf  43400
  Copyright terms: Public domain W3C validator