Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmflem Structured version   Visualization version   GIF version

Theorem decsmflem 43041
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmflem.x 𝑥𝜑
decsmflem.y 𝑦𝜑
decsmflem.a (𝜑𝐴 ⊆ ℝ)
decsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
decsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmflem.j 𝐽 = (topGen‘ran (,))
decsmflem.b 𝐵 = (SalGen‘𝐽)
decsmflem.r (𝜑𝑅 ∈ ℝ*)
decsmflem.l 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
decsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
decsmflem.d 𝐷 = (-∞(,)𝐶)
decsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
decsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑦,𝐶   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑏)   𝑅(𝑏)   𝐸(𝑦)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem decsmflem
StepHypRef Expression
1 decsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 10697 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 decsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
5 ssrab2 4055 . . . . . . . . 9 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
64, 5eqsstri 4000 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 decsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 3976 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 3966 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 decsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 decsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 42638 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13eqeltrid 2917 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 decsmflem.x . . . . 5 𝑥𝜑
16 decsmflem.c . . . . . . 7 𝐶 = sup(𝑌, ℝ*, < )
17 nfrab1 3384 . . . . . . . . 9 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
184, 17nfcxfr 2975 . . . . . . . 8 𝑥𝑌
19 nfcv 2977 . . . . . . . 8 𝑥*
20 nfcv 2977 . . . . . . . 8 𝑥 <
2118, 19, 20nfsup 8914 . . . . . . 7 𝑥sup(𝑌, ℝ*, < )
2216, 21nfcxfr 2975 . . . . . 6 𝑥𝐶
2322, 18nfel 2992 . . . . 5 𝑥 𝐶𝑌
2415, 23nfan 1896 . . . 4 𝑥(𝜑𝐶𝑌)
258adantr 483 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
26 decsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2726adantr 483 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
28 decsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
2928adantr 483 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
30 decsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3130adantr 483 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
32 simpr 487 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3324, 25, 27, 29, 31, 4, 16, 32, 1pimdecfgtioc 42992 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 4180 . . . 4 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534rspceeqv 3637 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3614, 33, 35syl2anc 586 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
37 decsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3811, 12iooborel 42633 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
3937, 38eqeltri 2909 . . . . 5 𝐷𝐵
4039a1i 11 . . . 4 (𝜑𝐷𝐵)
4140adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4223nfn 1853 . . . . 5 𝑥 ¬ 𝐶𝑌
4315, 42nfan 1896 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
44 decsmflem.y . . . . 5 𝑦𝜑
45 nfv 1911 . . . . 5 𝑦 ¬ 𝐶𝑌
4644, 45nfan 1896 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
478adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4826adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4928adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
5030adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
51 simpr 487 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5243, 46, 47, 48, 49, 50, 4, 16, 51, 37pimdecfgtioo 42994 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
53 ineq1 4180 . . . 4 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5453rspceeqv 3637 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5541, 52, 54syl2anc 586 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5636, 55pm2.61dan 811 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139  {crab 3142  cin 3934  wss 3935   class class class wbr 5065  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  cr 10535  -∞cmnf 10672  *cxr 10673   < clt 10674  cle 10675  (,)cioo 12737  (,]cioc 12738  topGenctg 16710  SalGencsalgen 42596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-ioo 12741  df-ioc 12742  df-fl 13161  df-topgen 16716  df-top 21501  df-bases 21553  df-salg 42593  df-salgen 42597
This theorem is referenced by:  decsmf  43042
  Copyright terms: Public domain W3C validator