| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > decsmflem | Structured version Visualization version GIF version | ||
| Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| decsmflem.x | ⊢ Ⅎ𝑥𝜑 |
| decsmflem.y | ⊢ Ⅎ𝑦𝜑 |
| decsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| decsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| decsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
| decsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| decsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| decsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| decsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} |
| decsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
| decsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
| decsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
| Ref | Expression |
|---|---|
| decsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
| 2 | mnfxr 11238 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
| 4 | decsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
| 5 | ssrab2 4046 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3996 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
| 8 | decsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 9 | 7, 8 | sstrd 3960 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 10 | 9 | sselda 3949 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
| 11 | decsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 12 | decsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 13 | 3, 10, 11, 12 | iocborel 46361 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
| 14 | 1, 13 | eqeltrid 2833 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
| 15 | decsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 16 | decsmflem.c | . . . . . . 7 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
| 17 | nfrab1 3429 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
| 18 | 4, 17 | nfcxfr 2890 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 |
| 19 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥ℝ* | |
| 20 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥 < | |
| 21 | 18, 19, 20 | nfsup 9409 | . . . . . . 7 ⊢ Ⅎ𝑥sup(𝑌, ℝ*, < ) |
| 22 | 16, 21 | nfcxfr 2890 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 |
| 23 | 22, 18 | nfel 2907 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
| 24 | 15, 23 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
| 25 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
| 26 | decsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
| 28 | decsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) | |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
| 30 | decsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
| 33 | 24, 25, 27, 29, 31, 4, 16, 32, 1 | pimdecfgtioc 46720 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
| 34 | ineq1 4179 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
| 35 | 34 | rspceeqv 3614 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 36 | 14, 33, 35 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 37 | decsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
| 38 | 11, 12 | iooborel 46356 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
| 39 | 37, 38 | eqeltri 2825 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
| 40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
| 41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
| 42 | 23 | nfn 1857 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
| 43 | 15, 42 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
| 44 | decsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 45 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
| 46 | 44, 45 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
| 47 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
| 48 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
| 49 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
| 50 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
| 51 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
| 52 | 43, 46, 47, 48, 49, 50, 4, 16, 51, 37 | pimdecfgtioo 46722 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
| 53 | ineq1 4179 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
| 54 | 53 | rspceeqv 3614 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 55 | 41, 52, 54 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| 56 | 36, 55 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 ℝcr 11074 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 (,)cioo 13313 (,]cioc 13314 topGenctg 17407 SalGencsalgen 46317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ioc 13318 df-fl 13761 df-topgen 17413 df-top 22788 df-bases 22840 df-salg 46314 df-salgen 46318 |
| This theorem is referenced by: decsmf 46772 |
| Copyright terms: Public domain | W3C validator |