Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmflem Structured version   Visualization version   GIF version

Theorem decsmflem 41766
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmflem.x 𝑥𝜑
decsmflem.y 𝑦𝜑
decsmflem.a (𝜑𝐴 ⊆ ℝ)
decsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
decsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmflem.j 𝐽 = (topGen‘ran (,))
decsmflem.b 𝐵 = (SalGen‘𝐽)
decsmflem.r (𝜑𝑅 ∈ ℝ*)
decsmflem.l 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
decsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
decsmflem.d 𝐷 = (-∞(,)𝐶)
decsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
decsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑦,𝐶   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑏)   𝑅(𝑏)   𝐸(𝑦)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem decsmflem
StepHypRef Expression
1 decsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 10421 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 decsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
5 ssrab2 3914 . . . . . . . . 9 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
64, 5eqsstri 3860 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 decsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 3837 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 3827 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 decsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 decsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 41363 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13syl5eqel 2910 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 decsmflem.x . . . . 5 𝑥𝜑
16 decsmflem.c . . . . . . 7 𝐶 = sup(𝑌, ℝ*, < )
17 nfrab1 3333 . . . . . . . . 9 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
184, 17nfcxfr 2967 . . . . . . . 8 𝑥𝑌
19 nfcv 2969 . . . . . . . 8 𝑥*
20 nfcv 2969 . . . . . . . 8 𝑥 <
2118, 19, 20nfsup 8632 . . . . . . 7 𝑥sup(𝑌, ℝ*, < )
2216, 21nfcxfr 2967 . . . . . 6 𝑥𝐶
2322, 18nfel 2982 . . . . 5 𝑥 𝐶𝑌
2415, 23nfan 2002 . . . 4 𝑥(𝜑𝐶𝑌)
258adantr 474 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
26 decsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2726adantr 474 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
28 decsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
2928adantr 474 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
30 decsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3130adantr 474 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
32 simpr 479 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3324, 25, 27, 29, 31, 4, 16, 32, 1pimdecfgtioc 41717 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 4036 . . . 4 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534rspceeqv 3544 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3614, 33, 35syl2anc 579 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
37 decsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3811, 12iooborel 41358 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
3937, 38eqeltri 2902 . . . . 5 𝐷𝐵
4039a1i 11 . . . 4 (𝜑𝐷𝐵)
4140adantr 474 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4223nfn 1957 . . . . 5 𝑥 ¬ 𝐶𝑌
4315, 42nfan 2002 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
44 decsmflem.y . . . . 5 𝑦𝜑
45 nfv 2013 . . . . 5 𝑦 ¬ 𝐶𝑌
4644, 45nfan 2002 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
478adantr 474 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4826adantr 474 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4928adantr 474 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
5030adantr 474 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
51 simpr 479 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5243, 46, 47, 48, 49, 50, 4, 16, 51, 37pimdecfgtioo 41719 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
53 ineq1 4036 . . . 4 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5453rspceeqv 3544 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5541, 52, 54syl2anc 579 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5636, 55pm2.61dan 847 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wnf 1882  wcel 2164  wral 3117  wrex 3118  {crab 3121  cin 3797  wss 3798   class class class wbr 4875  ran crn 5347  wf 6123  cfv 6127  (class class class)co 6910  supcsup 8621  cr 10258  -∞cmnf 10396  *cxr 10397   < clt 10398  cle 10399  (,)cioo 12470  (,]cioc 12471  topGenctg 16458  SalGencsalgen 41321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-card 9085  df-acn 9088  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-ioo 12474  df-ioc 12475  df-fl 12895  df-topgen 16464  df-top 21076  df-bases 21128  df-salg 41318  df-salgen 41322
This theorem is referenced by:  decsmf  41767
  Copyright terms: Public domain W3C validator