![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > decsmflem | Structured version Visualization version GIF version |
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
decsmflem.x | ⊢ Ⅎ𝑥𝜑 |
decsmflem.y | ⊢ Ⅎ𝑦𝜑 |
decsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
decsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
decsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
decsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
decsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
decsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
decsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} |
decsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
decsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
decsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
Ref | Expression |
---|---|
decsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
2 | mnfxr 11316 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
4 | decsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
5 | ssrab2 4090 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 4030 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
8 | decsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 7, 8 | sstrd 4006 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
10 | 9 | sselda 3995 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
11 | decsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | decsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
13 | 3, 10, 11, 12 | iocborel 46312 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
14 | 1, 13 | eqeltrid 2843 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
15 | decsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
16 | decsmflem.c | . . . . . . 7 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
17 | nfrab1 3454 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝑅 < (𝐹‘𝑥)} | |
18 | 4, 17 | nfcxfr 2901 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑌 |
19 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑥ℝ* | |
20 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑥 < | |
21 | 18, 19, 20 | nfsup 9489 | . . . . . . 7 ⊢ Ⅎ𝑥sup(𝑌, ℝ*, < ) |
22 | 16, 21 | nfcxfr 2901 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 |
23 | 22, 18 | nfel 2918 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
24 | 15, 23 | nfan 1897 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
25 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
26 | decsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
28 | decsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) | |
29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
30 | decsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
33 | 24, 25, 27, 29, 31, 4, 16, 32, 1 | pimdecfgtioc 46671 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
34 | ineq1 4221 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
35 | 34 | rspceeqv 3645 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
36 | 14, 33, 35 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
37 | decsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
38 | 11, 12 | iooborel 46307 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
39 | 37, 38 | eqeltri 2835 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
41 | 40 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
42 | 23 | nfn 1855 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
43 | 15, 42 | nfan 1897 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
44 | decsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
45 | nfv 1912 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
46 | 44, 45 | nfan 1897 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
47 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
48 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
49 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥))) |
50 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
51 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
52 | 43, 46, 47, 48, 49, 50, 4, 16, 51, 37 | pimdecfgtioo 46673 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
53 | ineq1 4221 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
54 | 53 | rspceeqv 3645 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
55 | 41, 52, 54 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
56 | 36, 55 | pm2.61dan 813 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 ∩ cin 3962 ⊆ wss 3963 class class class wbr 5148 ran crn 5690 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supcsup 9478 ℝcr 11152 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 (,)cioo 13384 (,]cioc 13385 topGenctg 17484 SalGencsalgen 46268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-ioo 13388 df-ioc 13389 df-fl 13829 df-topgen 17490 df-top 22916 df-bases 22969 df-salg 46265 df-salgen 46269 |
This theorem is referenced by: decsmf 46723 |
Copyright terms: Public domain | W3C validator |