Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decsmflem Structured version   Visualization version   GIF version

Theorem decsmflem 46687
Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
decsmflem.x 𝑥𝜑
decsmflem.y 𝑦𝜑
decsmflem.a (𝜑𝐴 ⊆ ℝ)
decsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
decsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
decsmflem.j 𝐽 = (topGen‘ran (,))
decsmflem.b 𝐵 = (SalGen‘𝐽)
decsmflem.r (𝜑𝑅 ∈ ℝ*)
decsmflem.l 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
decsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
decsmflem.d 𝐷 = (-∞(,)𝐶)
decsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
decsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑦,𝐶   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑏)   𝑅(𝑏)   𝐸(𝑦)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem decsmflem
StepHypRef Expression
1 decsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 11347 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 decsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
5 ssrab2 4103 . . . . . . . . 9 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
64, 5eqsstri 4043 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 decsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 4019 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 4008 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 decsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 decsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 46277 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13eqeltrid 2848 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 decsmflem.x . . . . 5 𝑥𝜑
16 decsmflem.c . . . . . . 7 𝐶 = sup(𝑌, ℝ*, < )
17 nfrab1 3464 . . . . . . . . 9 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
184, 17nfcxfr 2906 . . . . . . . 8 𝑥𝑌
19 nfcv 2908 . . . . . . . 8 𝑥*
20 nfcv 2908 . . . . . . . 8 𝑥 <
2118, 19, 20nfsup 9520 . . . . . . 7 𝑥sup(𝑌, ℝ*, < )
2216, 21nfcxfr 2906 . . . . . 6 𝑥𝐶
2322, 18nfel 2923 . . . . 5 𝑥 𝐶𝑌
2415, 23nfan 1898 . . . 4 𝑥(𝜑𝐶𝑌)
258adantr 480 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
26 decsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2726adantr 480 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
28 decsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
2928adantr 480 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
30 decsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3130adantr 480 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
32 simpr 484 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3324, 25, 27, 29, 31, 4, 16, 32, 1pimdecfgtioc 46636 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 4234 . . . 4 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534rspceeqv 3658 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3614, 33, 35syl2anc 583 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
37 decsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3811, 12iooborel 46272 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
3937, 38eqeltri 2840 . . . . 5 𝐷𝐵
4039a1i 11 . . . 4 (𝜑𝐷𝐵)
4140adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4223nfn 1856 . . . . 5 𝑥 ¬ 𝐶𝑌
4315, 42nfan 1898 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
44 decsmflem.y . . . . 5 𝑦𝜑
45 nfv 1913 . . . . 5 𝑦 ¬ 𝐶𝑌
4644, 45nfan 1898 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
478adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4826adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4928adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
5030adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
51 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5243, 46, 47, 48, 49, 50, 4, 16, 51, 37pimdecfgtioo 46638 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
53 ineq1 4234 . . . 4 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5453rspceeqv 3658 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5541, 52, 54syl2anc 583 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5636, 55pm2.61dan 812 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976   class class class wbr 5166  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  (,]cioc 13408  topGenctg 17497  SalGencsalgen 46233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-fl 13843  df-topgen 17503  df-top 22921  df-bases 22974  df-salg 46230  df-salgen 46234
This theorem is referenced by:  decsmf  46688
  Copyright terms: Public domain W3C validator