| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvcli | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| nvcli.9 | ⊢ 𝑈 ∈ NrmCVec |
| nvcli.7 | ⊢ 𝐴 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| nvcli | ⊢ (𝑁‘𝐴) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvcli.9 | . 2 ⊢ 𝑈 ∈ NrmCVec | |
| 2 | nvcli.7 | . 2 ⊢ 𝐴 ∈ 𝑋 | |
| 3 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | 3, 4 | nvcl 30636 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (𝑁‘𝐴) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℝcr 11002 NrmCVeccnv 30559 BaseSetcba 30561 normCVcnmcv 30565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-nmcv 30575 |
| This theorem is referenced by: ip0i 30800 ip1ilem 30801 ipasslem10 30814 siilem1 30826 siii 30828 |
| Copyright terms: Public domain | W3C validator |