| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvcli | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| nvcli.9 | ⊢ 𝑈 ∈ NrmCVec |
| nvcli.7 | ⊢ 𝐴 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| nvcli | ⊢ (𝑁‘𝐴) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvcli.9 | . 2 ⊢ 𝑈 ∈ NrmCVec | |
| 2 | nvcli.7 | . 2 ⊢ 𝐴 ∈ 𝑋 | |
| 3 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | 3, 4 | nvcl 30590 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (𝑁‘𝐴) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6511 ℝcr 11067 NrmCVeccnv 30513 BaseSetcba 30515 normCVcnmcv 30519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-1st 7968 df-2nd 7969 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 |
| This theorem is referenced by: ip0i 30754 ip1ilem 30755 ipasslem10 30768 siilem1 30780 siii 30782 |
| Copyright terms: Public domain | W3C validator |