MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcli Structured version   Visualization version   GIF version

Theorem nvcli 30694
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvf.1 𝑋 = (BaseSet‘𝑈)
nvf.6 𝑁 = (normCV𝑈)
nvcli.9 𝑈 ∈ NrmCVec
nvcli.7 𝐴𝑋
Assertion
Ref Expression
nvcli (𝑁𝐴) ∈ ℝ

Proof of Theorem nvcli
StepHypRef Expression
1 nvcli.9 . 2 𝑈 ∈ NrmCVec
2 nvcli.7 . 2 𝐴𝑋
3 nvf.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvf.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 30693 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
61, 2, 5mp2an 691 1 (𝑁𝐴) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cfv 6573  cr 11183  NrmCVeccnv 30616  BaseSetcba 30618  normCVcnmcv 30622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-1st 8030  df-2nd 8031  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632
This theorem is referenced by:  ip0i  30857  ip1ilem  30858  ipasslem10  30871  siilem1  30883  siii  30885
  Copyright terms: Public domain W3C validator