![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvcli | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
nvcli.9 | ⊢ 𝑈 ∈ NrmCVec |
nvcli.7 | ⊢ 𝐴 ∈ 𝑋 |
Ref | Expression |
---|---|
nvcli | ⊢ (𝑁‘𝐴) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvcli.9 | . 2 ⊢ 𝑈 ∈ NrmCVec | |
2 | nvcli.7 | . 2 ⊢ 𝐴 ∈ 𝑋 | |
3 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 3, 4 | nvcl 28067 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
6 | 1, 2, 5 | mp2an 683 | 1 ⊢ (𝑁‘𝐴) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 ‘cfv 6127 ℝcr 10258 NrmCVeccnv 27990 BaseSetcba 27992 normCVcnmcv 27996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-1st 7433 df-2nd 7434 df-vc 27965 df-nv 27998 df-va 28001 df-ba 28002 df-sm 28003 df-0v 28004 df-nmcv 28006 |
This theorem is referenced by: ip0i 28231 ip1ilem 28232 ipasslem10 28245 siilem1 28257 siii 28259 |
Copyright terms: Public domain | W3C validator |