MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcli Structured version   Visualization version   GIF version

Theorem nvcli 30681
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvf.1 𝑋 = (BaseSet‘𝑈)
nvf.6 𝑁 = (normCV𝑈)
nvcli.9 𝑈 ∈ NrmCVec
nvcli.7 𝐴𝑋
Assertion
Ref Expression
nvcli (𝑁𝐴) ∈ ℝ

Proof of Theorem nvcli
StepHypRef Expression
1 nvcli.9 . 2 𝑈 ∈ NrmCVec
2 nvcli.7 . 2 𝐴𝑋
3 nvf.1 . . 3 𝑋 = (BaseSet‘𝑈)
4 nvf.6 . . 3 𝑁 = (normCV𝑈)
53, 4nvcl 30680 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
61, 2, 5mp2an 692 1 (𝑁𝐴) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cfv 6561  cr 11154  NrmCVeccnv 30603  BaseSetcba 30605  normCVcnmcv 30609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-1st 8014  df-2nd 8015  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619
This theorem is referenced by:  ip0i  30844  ip1ilem  30845  ipasslem10  30858  siilem1  30870  siii  30872
  Copyright terms: Public domain W3C validator