MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcl Structured version   Visualization version   GIF version

Theorem nvcl 30642
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvf.1 𝑋 = (BaseSet‘𝑈)
nvf.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)

Proof of Theorem nvcl
StepHypRef Expression
1 nvf.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 nvf.6 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 30641 . 2 (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ)
43ffvelcdmda 7074 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  cr 11128  NrmCVeccnv 30565  BaseSetcba 30567  normCVcnmcv 30571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-1st 7988  df-2nd 7989  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-nmcv 30581
This theorem is referenced by:  nvcli  30643  nvm1  30646  nvpi  30648  nvz0  30649  nvmtri  30652  nvabs  30653  nvge0  30654  nvgt0  30655  nv1  30656  nmcvcn  30676  smcnlem  30678  ipval2lem2  30685  4ipval2  30689  ipidsq  30691  ipnm  30692  ipz  30700  nmosetre  30745  nmooge0  30748  nmoub3i  30754  nmounbi  30757  nmlno0lem  30774  nmblolbii  30780  blocnilem  30785  ipblnfi  30836  ubthlem1  30851  ubthlem2  30852  ubthlem3  30853  minvecolem1  30855  minvecolem2  30856  minvecolem4  30861  minvecolem5  30862  minvecolem6  30863  hlipgt0  30895  htthlem  30898
  Copyright terms: Public domain W3C validator