| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 3 | 1, 2 | nvf 30640 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
| 4 | 3 | ffvelcdmda 7017 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℝcr 11005 NrmCVeccnv 30564 BaseSetcba 30566 normCVcnmcv 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 |
| This theorem is referenced by: nvcli 30642 nvm1 30645 nvpi 30647 nvz0 30648 nvmtri 30651 nvabs 30652 nvge0 30653 nvgt0 30654 nv1 30655 nmcvcn 30675 smcnlem 30677 ipval2lem2 30684 4ipval2 30688 ipidsq 30690 ipnm 30691 ipz 30699 nmosetre 30744 nmooge0 30747 nmoub3i 30753 nmounbi 30756 nmlno0lem 30773 nmblolbii 30779 blocnilem 30784 ipblnfi 30835 ubthlem1 30850 ubthlem2 30851 ubthlem3 30852 minvecolem1 30854 minvecolem2 30855 minvecolem4 30860 minvecolem5 30861 minvecolem6 30862 hlipgt0 30894 htthlem 30897 |
| Copyright terms: Public domain | W3C validator |