MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvcl Structured version   Visualization version   GIF version

Theorem nvcl 30641
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvf.1 𝑋 = (BaseSet‘𝑈)
nvf.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)

Proof of Theorem nvcl
StepHypRef Expression
1 nvf.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 nvf.6 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 30640 . 2 (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ)
43ffvelcdmda 7017 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  cr 11005  NrmCVeccnv 30564  BaseSetcba 30566  normCVcnmcv 30570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580
This theorem is referenced by:  nvcli  30642  nvm1  30645  nvpi  30647  nvz0  30648  nvmtri  30651  nvabs  30652  nvge0  30653  nvgt0  30654  nv1  30655  nmcvcn  30675  smcnlem  30677  ipval2lem2  30684  4ipval2  30688  ipidsq  30690  ipnm  30691  ipz  30699  nmosetre  30744  nmooge0  30747  nmoub3i  30753  nmounbi  30756  nmlno0lem  30773  nmblolbii  30779  blocnilem  30784  ipblnfi  30835  ubthlem1  30850  ubthlem2  30851  ubthlem3  30852  minvecolem1  30854  minvecolem2  30855  minvecolem4  30860  minvecolem5  30861  minvecolem6  30862  hlipgt0  30894  htthlem  30897
  Copyright terms: Public domain W3C validator