Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | 1, 2 | nvf 28741 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
4 | 3 | ffvelrnda 6904 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 ℝcr 10728 NrmCVeccnv 28665 BaseSetcba 28667 normCVcnmcv 28671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-1st 7761 df-2nd 7762 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-nmcv 28681 |
This theorem is referenced by: nvcli 28743 nvm1 28746 nvpi 28748 nvz0 28749 nvmtri 28752 nvabs 28753 nvge0 28754 nvgt0 28755 nv1 28756 nmcvcn 28776 smcnlem 28778 ipval2lem2 28785 4ipval2 28789 ipidsq 28791 ipnm 28792 ipz 28800 nmosetre 28845 nmooge0 28848 nmoub3i 28854 nmounbi 28857 nmlno0lem 28874 nmblolbii 28880 blocnilem 28885 ipblnfi 28936 ubthlem1 28951 ubthlem2 28952 ubthlem3 28953 minvecolem1 28955 minvecolem2 28956 minvecolem4 28961 minvecolem5 28962 minvecolem6 28963 hlipgt0 28995 htthlem 28998 |
Copyright terms: Public domain | W3C validator |