![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | 1, 2 | nvf 28120 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
4 | 3 | ffvelrnda 6719 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ‘cfv 6228 ℝcr 10385 NrmCVeccnv 28044 BaseSetcba 28046 normCVcnmcv 28050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-1st 7548 df-2nd 7549 df-vc 28019 df-nv 28052 df-va 28055 df-ba 28056 df-sm 28057 df-0v 28058 df-nmcv 28060 |
This theorem is referenced by: nvcli 28122 nvm1 28125 nvpi 28127 nvz0 28128 nvmtri 28131 nvabs 28132 nvge0 28133 nvgt0 28134 nv1 28135 nmcvcn 28155 smcnlem 28157 ipval2lem2 28164 4ipval2 28168 ipidsq 28170 ipnm 28171 ipz 28179 nmosetre 28224 nmooge0 28227 nmoub3i 28233 nmounbi 28236 nmlno0lem 28253 nmblolbii 28259 blocnilem 28264 ipblnfi 28315 ubthlem1 28330 ubthlem2 28331 ubthlem3 28332 minvecolem1 28334 minvecolem2 28335 minvecolem4 28340 minvecolem5 28341 minvecolem6 28342 hlipgt0 28374 htthlem 28377 |
Copyright terms: Public domain | W3C validator |