| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 3 | 1, 2 | nvf 30589 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
| 4 | 3 | ffvelcdmda 7056 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 ℝcr 11067 NrmCVeccnv 30513 BaseSetcba 30515 normCVcnmcv 30519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-1st 7968 df-2nd 7969 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 |
| This theorem is referenced by: nvcli 30591 nvm1 30594 nvpi 30596 nvz0 30597 nvmtri 30600 nvabs 30601 nvge0 30602 nvgt0 30603 nv1 30604 nmcvcn 30624 smcnlem 30626 ipval2lem2 30633 4ipval2 30637 ipidsq 30639 ipnm 30640 ipz 30648 nmosetre 30693 nmooge0 30696 nmoub3i 30702 nmounbi 30705 nmlno0lem 30722 nmblolbii 30728 blocnilem 30733 ipblnfi 30784 ubthlem1 30799 ubthlem2 30800 ubthlem3 30801 minvecolem1 30803 minvecolem2 30804 minvecolem4 30809 minvecolem5 30810 minvecolem6 30811 hlipgt0 30843 htthlem 30846 |
| Copyright terms: Public domain | W3C validator |