Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | 1, 2 | nvf 28923 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
4 | 3 | ffvelrnda 6943 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 ℝcr 10801 NrmCVeccnv 28847 BaseSetcba 28849 normCVcnmcv 28853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 |
This theorem is referenced by: nvcli 28925 nvm1 28928 nvpi 28930 nvz0 28931 nvmtri 28934 nvabs 28935 nvge0 28936 nvgt0 28937 nv1 28938 nmcvcn 28958 smcnlem 28960 ipval2lem2 28967 4ipval2 28971 ipidsq 28973 ipnm 28974 ipz 28982 nmosetre 29027 nmooge0 29030 nmoub3i 29036 nmounbi 29039 nmlno0lem 29056 nmblolbii 29062 blocnilem 29067 ipblnfi 29118 ubthlem1 29133 ubthlem2 29134 ubthlem3 29135 minvecolem1 29137 minvecolem2 29138 minvecolem4 29143 minvecolem5 29144 minvecolem6 29145 hlipgt0 29177 htthlem 29180 |
Copyright terms: Public domain | W3C validator |