| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvcl | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 3 | 1, 2 | nvf 30596 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
| 4 | 3 | ffvelcdmda 7059 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 ℝcr 11074 NrmCVeccnv 30520 BaseSetcba 30522 normCVcnmcv 30526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-1st 7971 df-2nd 7972 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 |
| This theorem is referenced by: nvcli 30598 nvm1 30601 nvpi 30603 nvz0 30604 nvmtri 30607 nvabs 30608 nvge0 30609 nvgt0 30610 nv1 30611 nmcvcn 30631 smcnlem 30633 ipval2lem2 30640 4ipval2 30644 ipidsq 30646 ipnm 30647 ipz 30655 nmosetre 30700 nmooge0 30703 nmoub3i 30709 nmounbi 30712 nmlno0lem 30729 nmblolbii 30735 blocnilem 30740 ipblnfi 30791 ubthlem1 30806 ubthlem2 30807 ubthlem3 30808 minvecolem1 30810 minvecolem2 30811 minvecolem4 30816 minvecolem5 30817 minvecolem6 30818 hlipgt0 30850 htthlem 30853 |
| Copyright terms: Public domain | W3C validator |