MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvcss Structured version   Visualization version   GIF version

Theorem ocvcss 21653
Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssss.v 𝑉 = (Base‘𝑊)
cssss.c 𝐶 = (ClSubSp‘𝑊)
ocvcss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvcss ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐶)

Proof of Theorem ocvcss
StepHypRef Expression
1 cssss.v . . . 4 𝑉 = (Base‘𝑊)
2 ocvcss.o . . . 4 = (ocv‘𝑊)
31, 2ocvocv 21637 . . 3 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
42ocv2ss 21639 . . 3 (𝑆 ⊆ ( ‘( 𝑆)) → ( ‘( ‘( 𝑆))) ⊆ ( 𝑆))
53, 4syl 17 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( ‘( ‘( 𝑆))) ⊆ ( 𝑆))
61, 2ocvss 21636 . . . 4 ( 𝑆) ⊆ 𝑉
76a1i 11 . . 3 (𝑆𝑉 → ( 𝑆) ⊆ 𝑉)
8 cssss.c . . . 4 𝐶 = (ClSubSp‘𝑊)
91, 8, 2iscss2 21652 . . 3 ((𝑊 ∈ PreHil ∧ ( 𝑆) ⊆ 𝑉) → (( 𝑆) ∈ 𝐶 ↔ ( ‘( ‘( 𝑆))) ⊆ ( 𝑆)))
107, 9sylan2 591 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (( 𝑆) ∈ 𝐶 ↔ ( ‘( ‘( 𝑆))) ⊆ ( 𝑆)))
115, 10mpbird 256 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → ( 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3944  cfv 6549  Basecbs 17199  PreHilcphl 21590  ocvcocv 21626  ClSubSpccss 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-plusg 17265  df-mulr 17266  df-sca 17268  df-vsca 17269  df-ip 17270  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-mhm 18759  df-grp 18917  df-ghm 19193  df-mgp 20104  df-ur 20151  df-ring 20204  df-oppr 20302  df-rhm 20440  df-staf 20754  df-srng 20755  df-lmod 20774  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-phl 21592  df-ocv 21629  df-css 21630
This theorem is referenced by:  cssincl  21654  css0  21655  css1  21656  mrccss  21660
  Copyright terms: Public domain W3C validator