![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvcss | Structured version Visualization version GIF version |
Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
ocvcss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvcss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvcss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvocv 21637 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
4 | 2 | ocv2ss 21639 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆)) |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆)) |
6 | 1, 2 | ocvss 21636 | . . . 4 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
7 | 6 | a1i 11 | . . 3 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
8 | cssss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
9 | 1, 8, 2 | iscss2 21652 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → (( ⊥ ‘𝑆) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆))) |
10 | 7, 9 | sylan2 591 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (( ⊥ ‘𝑆) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆))) |
11 | 5, 10 | mpbird 256 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ‘cfv 6549 Basecbs 17199 PreHilcphl 21590 ocvcocv 21626 ClSubSpccss 21627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-plusg 17265 df-mulr 17266 df-sca 17268 df-vsca 17269 df-ip 17270 df-0g 17442 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-mhm 18759 df-grp 18917 df-ghm 19193 df-mgp 20104 df-ur 20151 df-ring 20204 df-oppr 20302 df-rhm 20440 df-staf 20754 df-srng 20755 df-lmod 20774 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-phl 21592 df-ocv 21629 df-css 21630 |
This theorem is referenced by: cssincl 21654 css0 21655 css1 21656 mrccss 21660 |
Copyright terms: Public domain | W3C validator |