![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvcss | Structured version Visualization version GIF version |
Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
ocvcss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvcss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvcss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvocv 21603 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
4 | 2 | ocv2ss 21605 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆)) |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆)) |
6 | 1, 2 | ocvss 21602 | . . . 4 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
7 | 6 | a1i 11 | . . 3 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
8 | cssss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
9 | 1, 8, 2 | iscss2 21618 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → (( ⊥ ‘𝑆) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆))) |
10 | 7, 9 | sylan2 592 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (( ⊥ ‘𝑆) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆))) |
11 | 5, 10 | mpbird 257 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 Basecbs 17180 PreHilcphl 21556 ocvcocv 21592 ClSubSpccss 21593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-grp 18893 df-ghm 19168 df-mgp 20075 df-ur 20122 df-ring 20175 df-oppr 20273 df-rhm 20411 df-staf 20725 df-srng 20726 df-lmod 20745 df-lmhm 20907 df-lvec 20988 df-sra 21058 df-rgmod 21059 df-phl 21558 df-ocv 21595 df-css 21596 |
This theorem is referenced by: cssincl 21620 css0 21621 css1 21622 mrccss 21626 |
Copyright terms: Public domain | W3C validator |