Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ocvcss | Structured version Visualization version GIF version |
Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssss.v | ⊢ 𝑉 = (Base‘𝑊) |
cssss.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
ocvcss.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvcss | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssss.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvcss.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvocv 20956 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
4 | 2 | ocv2ss 20958 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆)) |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆)) |
6 | 1, 2 | ocvss 20955 | . . . 4 ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 |
7 | 6 | a1i 11 | . . 3 ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) ⊆ 𝑉) |
8 | cssss.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
9 | 1, 8, 2 | iscss2 20971 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ ( ⊥ ‘𝑆) ⊆ 𝑉) → (( ⊥ ‘𝑆) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆))) |
10 | 7, 9 | sylan2 593 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (( ⊥ ‘𝑆) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) ⊆ ( ⊥ ‘𝑆))) |
11 | 5, 10 | mpbird 256 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ‘cfv 6465 Basecbs 16986 PreHilcphl 20909 ocvcocv 20945 ClSubSpccss 20946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-tpos 8090 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-ip 17054 df-0g 17226 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-mhm 18504 df-grp 18653 df-ghm 18905 df-mgp 19793 df-ur 19810 df-ring 19857 df-oppr 19934 df-rnghom 20031 df-staf 20185 df-srng 20186 df-lmod 20205 df-lmhm 20364 df-lvec 20445 df-sra 20514 df-rgmod 20515 df-phl 20911 df-ocv 20948 df-css 20949 |
This theorem is referenced by: cssincl 20973 css0 20974 css1 20975 mrccss 20979 |
Copyright terms: Public domain | W3C validator |