Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ocvsscon | Structured version Visualization version GIF version |
Description: Two ways to say that 𝑆 and 𝑇 are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
ocvlsp.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvlsp.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvsscon | ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑆 ⊆ ( ⊥ ‘𝑇) ↔ 𝑇 ⊆ ( ⊥ ‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvlsp.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvlsp.o | . . . . 5 ⊢ ⊥ = (ocv‘𝑊) | |
3 | 1, 2 | ocvocv 20866 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ ( ⊥ ‘( ⊥ ‘𝑇))) |
4 | 3 | 3adant2 1130 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ ( ⊥ ‘( ⊥ ‘𝑇))) |
5 | 2 | ocv2ss 20868 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘𝑇) → ( ⊥ ‘( ⊥ ‘𝑇)) ⊆ ( ⊥ ‘𝑆)) |
6 | sstr2 3933 | . . 3 ⊢ (𝑇 ⊆ ( ⊥ ‘( ⊥ ‘𝑇)) → (( ⊥ ‘( ⊥ ‘𝑇)) ⊆ ( ⊥ ‘𝑆) → 𝑇 ⊆ ( ⊥ ‘𝑆))) | |
7 | 4, 5, 6 | syl2im 40 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑆 ⊆ ( ⊥ ‘𝑇) → 𝑇 ⊆ ( ⊥ ‘𝑆))) |
8 | 1, 2 | ocvocv 20866 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
9 | 8 | 3adant3 1131 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) |
10 | 2 | ocv2ss 20868 | . . 3 ⊢ (𝑇 ⊆ ( ⊥ ‘𝑆) → ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘𝑇)) |
11 | sstr2 3933 | . . 3 ⊢ (𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆)) → (( ⊥ ‘( ⊥ ‘𝑆)) ⊆ ( ⊥ ‘𝑇) → 𝑆 ⊆ ( ⊥ ‘𝑇))) | |
12 | 9, 10, 11 | syl2im 40 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑇 ⊆ ( ⊥ ‘𝑆) → 𝑆 ⊆ ( ⊥ ‘𝑇))) |
13 | 7, 12 | impbid 211 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑆 ⊆ ( ⊥ ‘𝑇) ↔ 𝑇 ⊆ ( ⊥ ‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6431 Basecbs 16902 PreHilcphl 20819 ocvcocv 20855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-tpos 8027 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-map 8592 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-plusg 16965 df-mulr 16966 df-sca 16968 df-vsca 16969 df-ip 16970 df-0g 17142 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-mhm 18420 df-grp 18570 df-ghm 18822 df-mgp 19711 df-ur 19728 df-ring 19775 df-oppr 19852 df-rnghom 19949 df-staf 20095 df-srng 20096 df-lmod 20115 df-lmhm 20274 df-lvec 20355 df-sra 20424 df-rgmod 20425 df-phl 20821 df-ocv 20858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |