Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 6927 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 233 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ↦ cmpt 5135 ⟶wf 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-fun 6382 df-fn 6383 df-f 6384 |
This theorem is referenced by: harf 9174 r0weon 9626 dfac2a 9743 ackbij1lem10 9843 cff 9862 isf32lem9 9975 fin1a2lem2 10015 fin1a2lem4 10017 facmapnn 13851 wwlktovf 14523 cjf 14667 ref 14675 imf 14676 absf 14901 limsupcl 15034 limsupgf 15036 eff 15643 sinf 15685 cosf 15686 bitsf 15986 fnum 16298 fden 16299 prmgapprmo 16615 setcepi 17594 catcfuccl 17625 catcfucclOLD 17626 smndex1ibas 18327 smndex2dbas 18341 smndex2hbas 18343 staffval 19883 ocvfval 20628 pjfval 20668 pjpm 20670 leordtval2 22109 lecldbas 22116 nmfval 23486 nmoffn 23609 nmofval 23612 divcn 23765 xrhmeo 23843 tcphex 24114 tchnmfval 24125 ioorf 24470 dveflem 24876 tdeglem1 24953 resinf1o 25425 efifo 25436 logcnlem5 25534 resqrtcn 25635 asinf 25755 acosf 25757 atanf 25763 leibpilem2 25824 areaf 25844 emcllem1 25878 igamf 25933 chtf 25990 chpf 26005 ppif 26012 muf 26022 bposlem7 26171 2lgslem1b 26273 pntrf 26444 pntrsumo1 26446 pntsf 26454 pntrlog2bndlem4 26461 pntrlog2bndlem5 26462 normf 29204 hosubcli 29850 cnlnadjlem4 30151 cnlnadjlem6 30153 eulerpartlemsf 32038 fiblem 32077 signsvvf 32270 derangf 32843 snmlff 33004 ex-sategoelel12 33102 sinccvglem 33343 circum 33345 oldf 33778 newf 33779 leftf 33786 rightf 33787 dnif 34391 f1omptsnlem 35244 phpreu 35498 poimirlem26 35540 cncfres 35660 lsatset 36741 clsk1independent 41333 lhe4.4ex1a 41620 absfico 42431 clim1fr1 42817 liminfgf 42974 limsup10ex 42989 liminf10ex 42990 dvsinax 43129 wallispilem5 43285 wallispi 43286 stirlinglem5 43294 stirlinglem13 43302 stirlinglem14 43303 stirlinglem15 43304 stirlingr 43306 fourierdlem43 43366 fourierdlem57 43379 fourierdlem58 43380 fourierdlem62 43384 fouriersw 43447 0ome 43742 sprsymrelf 44620 fmtnof1 44660 prmdvdsfmtnof 44711 uspgrsprf 44981 ackendofnn0 45703 |
Copyright terms: Public domain | W3C validator |