Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 7016 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 229 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ↦ cmpt 5164 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: harf 9365 r0weon 9818 dfac2a 9935 ackbij1lem10 10035 cff 10054 isf32lem9 10167 fin1a2lem2 10207 fin1a2lem4 10209 facmapnn 14049 wwlktovf 14720 cjf 14864 ref 14872 imf 14873 absf 15098 limsupcl 15231 limsupgf 15233 eff 15840 sinf 15882 cosf 15883 bitsf 16183 fnum 16495 fden 16496 prmgapprmo 16812 setcepi 17852 catcfuccl 17883 catcfucclOLD 17884 smndex1ibas 18588 smndex2dbas 18602 smndex2hbas 18604 staffval 20156 ocvfval 20920 pjfval 20962 pjpm 20964 leordtval2 22412 lecldbas 22419 nmfval 23793 nmoffn 23924 nmofval 23927 divcn 24080 xrhmeo 24158 tcphex 24430 tchnmfval 24441 ioorf 24786 dveflem 25192 tdeglem1 25269 resinf1o 25741 efifo 25752 logcnlem5 25850 resqrtcn 25951 asinf 26071 acosf 26073 atanf 26079 leibpilem2 26140 areaf 26160 emcllem1 26194 igamf 26249 chtf 26306 chpf 26321 ppif 26328 muf 26338 bposlem7 26487 2lgslem1b 26589 pntrf 26760 pntrsumo1 26762 pntsf 26770 pntrlog2bndlem4 26777 pntrlog2bndlem5 26778 normf 29534 hosubcli 30180 cnlnadjlem4 30481 cnlnadjlem6 30483 eulerpartlemsf 32375 fiblem 32414 signsvvf 32607 derangf 33179 snmlff 33340 ex-sategoelel12 33438 sinccvglem 33679 circum 33681 oldf 34090 newf 34091 leftf 34098 rightf 34099 dnif 34703 f1omptsnlem 35555 phpreu 35809 poimirlem26 35851 cncfres 35971 lsatset 37204 clsk1independent 41869 lhe4.4ex1a 42160 absfico 42978 clim1fr1 43371 liminfgf 43528 limsup10ex 43543 liminf10ex 43544 dvsinax 43683 wallispilem5 43839 wallispi 43840 stirlinglem5 43848 stirlinglem13 43856 stirlinglem14 43857 stirlinglem15 43858 stirlingr 43860 fourierdlem43 43920 fourierdlem57 43933 fourierdlem58 43934 fourierdlem62 43938 fouriersw 44001 0ome 44297 sprsymrelf 45191 fmtnof1 45231 prmdvdsfmtnof 45282 uspgrsprf 45552 ackendofnn0 46274 |
Copyright terms: Public domain | W3C validator |