| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: harf 9487 r0weon 9941 dfac2a 10059 ackbij1lem10 10157 cff 10177 isf32lem9 10290 fin1a2lem2 10330 fin1a2lem4 10332 facmapnn 14226 wwlktovf 14898 cjf 15046 ref 15054 imf 15055 absf 15280 limsupcl 15415 limsupgf 15417 eff 16023 sinf 16068 cosf 16069 bitsf 16373 fnum 16688 fden 16689 prmgapprmo 17009 setcepi 18026 catcfuccl 18056 smndex1ibas 18803 smndex2dbas 18817 smndex2hbas 18819 staffval 20726 ocvfval 21551 pjfval 21591 pjpm 21593 psdmul 22029 psdmvr 22032 leordtval2 23075 lecldbas 23082 nmfval 24452 nmoffn 24575 nmofval 24578 divcnOLD 24733 divcn 24735 xrhmeo 24820 tcphex 25093 tchnmfval 25104 ioorf 25450 dveflem 25859 tdeglem1 25939 resinf1o 26421 efifo 26432 logcnlem5 26531 resqrtcn 26635 asinf 26758 acosf 26760 atanf 26766 leibpilem2 26827 areaf 26847 emcllem1 26882 igamf 26937 chtf 26994 chpf 27009 ppif 27016 muf 27026 bposlem7 27177 2lgslem1b 27279 pntrf 27450 pntrsumo1 27452 pntsf 27460 pntrlog2bndlem4 27467 pntrlog2bndlem5 27468 oldf 27741 newf 27742 leftf 27753 rightf 27754 normf 31025 hosubcli 31671 cnlnadjlem4 31972 cnlnadjlem6 31974 zringfrac 33498 eulerpartlemsf 34323 fiblem 34362 signsvvf 34543 derangf 35128 snmlff 35289 ex-sategoelel12 35387 sinccvglem 35632 circum 35634 dnif 36435 f1omptsnlem 37297 phpreu 37571 poimirlem26 37613 cncfres 37732 lsatset 38956 clsk1independent 44008 lhe4.4ex1a 44291 absfico 45185 clim1fr1 45572 liminfgf 45729 limsup10ex 45744 liminf10ex 45745 dvsinax 45884 wallispilem5 46040 wallispi 46041 stirlinglem5 46049 stirlinglem13 46057 stirlinglem14 46058 stirlinglem15 46059 stirlingr 46061 fourierdlem43 46121 fourierdlem57 46134 fourierdlem58 46135 fourierdlem62 46139 fouriersw 46202 0ome 46500 sprsymrelf 47469 fmtnof1 47509 prmdvdsfmtnof 47560 uspgrsprf 48107 ackendofnn0 48646 |
| Copyright terms: Public domain | W3C validator |