| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: harf 9511 r0weon 9965 dfac2a 10083 ackbij1lem10 10181 cff 10201 isf32lem9 10314 fin1a2lem2 10354 fin1a2lem4 10356 facmapnn 14250 wwlktovf 14922 cjf 15070 ref 15078 imf 15079 absf 15304 limsupcl 15439 limsupgf 15441 eff 16047 sinf 16092 cosf 16093 bitsf 16397 fnum 16712 fden 16713 prmgapprmo 17033 setcepi 18050 catcfuccl 18080 smndex1ibas 18827 smndex2dbas 18841 smndex2hbas 18843 staffval 20750 ocvfval 21575 pjfval 21615 pjpm 21617 psdmul 22053 psdmvr 22056 leordtval2 23099 lecldbas 23106 nmfval 24476 nmoffn 24599 nmofval 24602 divcnOLD 24757 divcn 24759 xrhmeo 24844 tcphex 25117 tchnmfval 25128 ioorf 25474 dveflem 25883 tdeglem1 25963 resinf1o 26445 efifo 26456 logcnlem5 26555 resqrtcn 26659 asinf 26782 acosf 26784 atanf 26790 leibpilem2 26851 areaf 26871 emcllem1 26906 igamf 26961 chtf 27018 chpf 27033 ppif 27040 muf 27050 bposlem7 27201 2lgslem1b 27303 pntrf 27474 pntrsumo1 27476 pntsf 27484 pntrlog2bndlem4 27491 pntrlog2bndlem5 27492 oldf 27765 newf 27766 leftf 27777 rightf 27778 normf 31052 hosubcli 31698 cnlnadjlem4 31999 cnlnadjlem6 32001 zringfrac 33525 eulerpartlemsf 34350 fiblem 34389 signsvvf 34570 derangf 35155 snmlff 35316 ex-sategoelel12 35414 sinccvglem 35659 circum 35661 dnif 36462 f1omptsnlem 37324 phpreu 37598 poimirlem26 37640 cncfres 37759 lsatset 38983 clsk1independent 44035 lhe4.4ex1a 44318 absfico 45212 clim1fr1 45599 liminfgf 45756 limsup10ex 45771 liminf10ex 45772 dvsinax 45911 wallispilem5 46067 wallispi 46068 stirlinglem5 46076 stirlinglem13 46084 stirlinglem14 46085 stirlinglem15 46086 stirlingr 46088 fourierdlem43 46148 fourierdlem57 46161 fourierdlem58 46162 fourierdlem62 46166 fouriersw 46229 0ome 46527 sprsymrelf 47496 fmtnof1 47536 prmdvdsfmtnof 47587 uspgrsprf 48134 ackendofnn0 48673 |
| Copyright terms: Public domain | W3C validator |