| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ↦ cmpt 5191 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: harf 9518 r0weon 9972 dfac2a 10090 ackbij1lem10 10188 cff 10208 isf32lem9 10321 fin1a2lem2 10361 fin1a2lem4 10363 facmapnn 14257 wwlktovf 14929 cjf 15077 ref 15085 imf 15086 absf 15311 limsupcl 15446 limsupgf 15448 eff 16054 sinf 16099 cosf 16100 bitsf 16404 fnum 16719 fden 16720 prmgapprmo 17040 setcepi 18057 catcfuccl 18087 smndex1ibas 18834 smndex2dbas 18848 smndex2hbas 18850 staffval 20757 ocvfval 21582 pjfval 21622 pjpm 21624 psdmul 22060 psdmvr 22063 leordtval2 23106 lecldbas 23113 nmfval 24483 nmoffn 24606 nmofval 24609 divcnOLD 24764 divcn 24766 xrhmeo 24851 tcphex 25124 tchnmfval 25135 ioorf 25481 dveflem 25890 tdeglem1 25970 resinf1o 26452 efifo 26463 logcnlem5 26562 resqrtcn 26666 asinf 26789 acosf 26791 atanf 26797 leibpilem2 26858 areaf 26878 emcllem1 26913 igamf 26968 chtf 27025 chpf 27040 ppif 27047 muf 27057 bposlem7 27208 2lgslem1b 27310 pntrf 27481 pntrsumo1 27483 pntsf 27491 pntrlog2bndlem4 27498 pntrlog2bndlem5 27499 oldf 27772 newf 27773 leftf 27784 rightf 27785 normf 31059 hosubcli 31705 cnlnadjlem4 32006 cnlnadjlem6 32008 zringfrac 33532 eulerpartlemsf 34357 fiblem 34396 signsvvf 34577 derangf 35162 snmlff 35323 ex-sategoelel12 35421 sinccvglem 35666 circum 35668 dnif 36469 f1omptsnlem 37331 phpreu 37605 poimirlem26 37647 cncfres 37766 lsatset 38990 clsk1independent 44042 lhe4.4ex1a 44325 absfico 45219 clim1fr1 45606 liminfgf 45763 limsup10ex 45778 liminf10ex 45779 dvsinax 45918 wallispilem5 46074 wallispi 46075 stirlinglem5 46083 stirlinglem13 46091 stirlinglem14 46092 stirlinglem15 46093 stirlingr 46095 fourierdlem43 46155 fourierdlem57 46168 fourierdlem58 46169 fourierdlem62 46173 fouriersw 46236 0ome 46534 sprsymrelf 47500 fmtnof1 47540 prmdvdsfmtnof 47591 uspgrsprf 48138 ackendofnn0 48677 |
| Copyright terms: Public domain | W3C validator |