![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3100 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 6703 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 222 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ∀wral 3090 ↦ cmpt 5013 ⟶wf 6189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pr 5190 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-fv 6201 |
This theorem is referenced by: harf 8825 r0weon 9238 dfac2a 9355 ackbij1lem10 9455 cff 9474 isf32lem9 9587 fin1a2lem2 9627 fin1a2lem4 9629 facmapnn 13466 wwlktovf 14187 cjf 14330 ref 14338 imf 14339 absf 14564 limsupcl 14697 limsupgf 14699 eff 15301 sinf 15343 cosf 15344 bitsf 15642 fnum 15944 fden 15945 prmgapprmo 16260 setcepi 17218 catcfuccl 17239 staffval 19352 ocvfval 20527 pjfval 20567 pjpm 20569 leordtval2 21539 lecldbas 21546 nmfval 22916 nmoffn 23038 nmofval 23041 divcn 23194 xrhmeo 23268 tcphex 23538 tchnmfval 23549 ioorf 23892 dveflem 24294 resinf1o 24836 efifo 24847 logcnlem5 24945 resqrtcn 25046 asinf 25166 acosf 25168 atanf 25174 leibpilem2 25236 areaf 25256 emcllem1 25290 igamf 25345 chtf 25402 chpf 25417 ppif 25424 muf 25434 bposlem7 25583 2lgslem1b 25685 pntrf 25856 pntrsumo1 25858 pntsf 25866 pntrlog2bndlem4 25873 pntrlog2bndlem5 25874 normf 28694 hosubcli 29342 cnlnadjlem4 29643 cnlnadjlem6 29645 eulerpartlemsf 31294 fiblem 31334 signsvvf 31529 derangf 32040 snmlff 32201 sinccvglem 32475 circum 32477 dnif 33373 f1omptsnlem 34099 phpreu 34357 poimirlem26 34399 cncfres 34525 lsatset 35611 clsk1independent 39800 lhe4.4ex1a 40118 absfico 40942 clim1fr1 41348 liminfgf 41505 limsup10ex 41520 liminf10ex 41521 dvsinax 41662 wallispilem5 41820 wallispi 41821 stirlinglem5 41829 stirlinglem13 41837 stirlinglem14 41838 stirlinglem15 41839 stirlingr 41841 fourierdlem43 41901 fourierdlem57 41914 fourierdlem58 41915 fourierdlem62 41919 fouriersw 41982 0ome 42277 sprsymrelf 43060 fmtnof1 43100 prmdvdsfmtnof 43151 uspgrsprf 43424 |
Copyright terms: Public domain | W3C validator |