| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5183 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: harf 9487 r0weon 9941 dfac2a 10059 ackbij1lem10 10157 cff 10177 isf32lem9 10290 fin1a2lem2 10330 fin1a2lem4 10332 facmapnn 14226 wwlktovf 14898 cjf 15046 ref 15054 imf 15055 absf 15280 limsupcl 15415 limsupgf 15417 eff 16023 sinf 16068 cosf 16069 bitsf 16373 fnum 16688 fden 16689 prmgapprmo 17009 setcepi 18030 catcfuccl 18060 smndex1ibas 18809 smndex2dbas 18823 smndex2hbas 18825 staffval 20761 ocvfval 21608 pjfval 21648 pjpm 21650 psdmul 22086 psdmvr 22089 leordtval2 23132 lecldbas 23139 nmfval 24509 nmoffn 24632 nmofval 24635 divcnOLD 24790 divcn 24792 xrhmeo 24877 tcphex 25150 tchnmfval 25161 ioorf 25507 dveflem 25916 tdeglem1 25996 resinf1o 26478 efifo 26489 logcnlem5 26588 resqrtcn 26692 asinf 26815 acosf 26817 atanf 26823 leibpilem2 26884 areaf 26904 emcllem1 26939 igamf 26994 chtf 27051 chpf 27066 ppif 27073 muf 27083 bposlem7 27234 2lgslem1b 27336 pntrf 27507 pntrsumo1 27509 pntsf 27517 pntrlog2bndlem4 27524 pntrlog2bndlem5 27525 oldf 27802 newf 27803 leftf 27814 rightf 27815 normf 31102 hosubcli 31748 cnlnadjlem4 32049 cnlnadjlem6 32051 zringfrac 33518 eulerpartlemsf 34343 fiblem 34382 signsvvf 34563 derangf 35148 snmlff 35309 ex-sategoelel12 35407 sinccvglem 35652 circum 35654 dnif 36455 f1omptsnlem 37317 phpreu 37591 poimirlem26 37633 cncfres 37752 lsatset 38976 clsk1independent 44028 lhe4.4ex1a 44311 absfico 45205 clim1fr1 45592 liminfgf 45749 limsup10ex 45764 liminf10ex 45765 dvsinax 45904 wallispilem5 46060 wallispi 46061 stirlinglem5 46069 stirlinglem13 46077 stirlinglem14 46078 stirlinglem15 46079 stirlingr 46081 fourierdlem43 46141 fourierdlem57 46154 fourierdlem58 46155 fourierdlem62 46159 fouriersw 46222 0ome 46520 sprsymrelf 47489 fmtnof1 47529 prmdvdsfmtnof 47580 uspgrsprf 48127 ackendofnn0 48666 |
| Copyright terms: Public domain | W3C validator |