Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3075 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 6978 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 229 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ↦ cmpt 5161 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: harf 9278 r0weon 9752 dfac2a 9869 ackbij1lem10 9969 cff 9988 isf32lem9 10101 fin1a2lem2 10141 fin1a2lem4 10143 facmapnn 13980 wwlktovf 14652 cjf 14796 ref 14804 imf 14805 absf 15030 limsupcl 15163 limsupgf 15165 eff 15772 sinf 15814 cosf 15815 bitsf 16115 fnum 16427 fden 16428 prmgapprmo 16744 setcepi 17784 catcfuccl 17815 catcfucclOLD 17816 smndex1ibas 18520 smndex2dbas 18534 smndex2hbas 18536 staffval 20088 ocvfval 20852 pjfval 20894 pjpm 20896 leordtval2 22344 lecldbas 22351 nmfval 23725 nmoffn 23856 nmofval 23859 divcn 24012 xrhmeo 24090 tcphex 24362 tchnmfval 24373 ioorf 24718 dveflem 25124 tdeglem1 25201 resinf1o 25673 efifo 25684 logcnlem5 25782 resqrtcn 25883 asinf 26003 acosf 26005 atanf 26011 leibpilem2 26072 areaf 26092 emcllem1 26126 igamf 26181 chtf 26238 chpf 26253 ppif 26260 muf 26270 bposlem7 26419 2lgslem1b 26521 pntrf 26692 pntrsumo1 26694 pntsf 26702 pntrlog2bndlem4 26709 pntrlog2bndlem5 26710 normf 29464 hosubcli 30110 cnlnadjlem4 30411 cnlnadjlem6 30413 eulerpartlemsf 32305 fiblem 32344 signsvvf 32537 derangf 33109 snmlff 33270 ex-sategoelel12 33368 sinccvglem 33609 circum 33611 oldf 34020 newf 34021 leftf 34028 rightf 34029 dnif 34633 f1omptsnlem 35486 phpreu 35740 poimirlem26 35782 cncfres 35902 lsatset 36983 clsk1independent 41609 lhe4.4ex1a 41900 absfico 42711 clim1fr1 43096 liminfgf 43253 limsup10ex 43268 liminf10ex 43269 dvsinax 43408 wallispilem5 43564 wallispi 43565 stirlinglem5 43573 stirlinglem13 43581 stirlinglem14 43582 stirlinglem15 43583 stirlingr 43585 fourierdlem43 43645 fourierdlem57 43658 fourierdlem58 43659 fourierdlem62 43663 fouriersw 43726 0ome 44021 sprsymrelf 44899 fmtnof1 44939 prmdvdsfmtnof 44990 uspgrsprf 45260 ackendofnn0 45982 |
Copyright terms: Public domain | W3C validator |