![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 7144 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: harf 9627 r0weon 10081 dfac2a 10199 ackbij1lem10 10297 cff 10317 isf32lem9 10430 fin1a2lem2 10470 fin1a2lem4 10472 facmapnn 14334 wwlktovf 15005 cjf 15153 ref 15161 imf 15162 absf 15386 limsupcl 15519 limsupgf 15521 eff 16129 sinf 16172 cosf 16173 bitsf 16473 fnum 16789 fden 16790 prmgapprmo 17109 setcepi 18155 catcfuccl 18186 catcfucclOLD 18187 smndex1ibas 18935 smndex2dbas 18949 smndex2hbas 18951 staffval 20864 ocvfval 21707 pjfval 21749 pjpm 21751 psdmul 22193 leordtval2 23241 lecldbas 23248 nmfval 24622 nmoffn 24753 nmofval 24756 divcnOLD 24909 divcn 24911 xrhmeo 24996 tcphex 25270 tchnmfval 25281 ioorf 25627 dveflem 26037 tdeglem1 26117 resinf1o 26596 efifo 26607 logcnlem5 26706 resqrtcn 26810 asinf 26933 acosf 26935 atanf 26941 leibpilem2 27002 areaf 27022 emcllem1 27057 igamf 27112 chtf 27169 chpf 27184 ppif 27191 muf 27201 bposlem7 27352 2lgslem1b 27454 pntrf 27625 pntrsumo1 27627 pntsf 27635 pntrlog2bndlem4 27642 pntrlog2bndlem5 27643 oldf 27914 newf 27915 leftf 27922 rightf 27923 normf 31155 hosubcli 31801 cnlnadjlem4 32102 cnlnadjlem6 32104 zringfrac 33547 eulerpartlemsf 34324 fiblem 34363 signsvvf 34556 derangf 35136 snmlff 35297 ex-sategoelel12 35395 sinccvglem 35640 circum 35642 dnif 36440 f1omptsnlem 37302 phpreu 37564 poimirlem26 37606 cncfres 37725 lsatset 38946 clsk1independent 44008 lhe4.4ex1a 44298 absfico 45125 clim1fr1 45522 liminfgf 45679 limsup10ex 45694 liminf10ex 45695 dvsinax 45834 wallispilem5 45990 wallispi 45991 stirlinglem5 45999 stirlinglem13 46007 stirlinglem14 46008 stirlinglem15 46009 stirlingr 46011 fourierdlem43 46071 fourierdlem57 46084 fourierdlem58 46085 fourierdlem62 46089 fouriersw 46152 0ome 46450 sprsymrelf 47369 fmtnof1 47409 prmdvdsfmtnof 47460 uspgrsprf 47869 ackendofnn0 48418 |
Copyright terms: Public domain | W3C validator |