![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 7107 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 229 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ↦ cmpt 5231 ⟶wf 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6543 df-fn 6544 df-f 6545 |
This theorem is referenced by: harf 9550 r0weon 10004 dfac2a 10121 ackbij1lem10 10221 cff 10240 isf32lem9 10353 fin1a2lem2 10393 fin1a2lem4 10395 facmapnn 14242 wwlktovf 14904 cjf 15048 ref 15056 imf 15057 absf 15281 limsupcl 15414 limsupgf 15416 eff 16022 sinf 16064 cosf 16065 bitsf 16365 fnum 16675 fden 16676 prmgapprmo 16992 setcepi 18035 catcfuccl 18066 catcfucclOLD 18067 smndex1ibas 18778 smndex2dbas 18792 smndex2hbas 18794 staffval 20448 ocvfval 21211 pjfval 21253 pjpm 21255 leordtval2 22708 lecldbas 22715 nmfval 24089 nmoffn 24220 nmofval 24223 divcn 24376 xrhmeo 24454 tcphex 24726 tchnmfval 24737 ioorf 25082 dveflem 25488 tdeglem1 25565 resinf1o 26037 efifo 26048 logcnlem5 26146 resqrtcn 26247 asinf 26367 acosf 26369 atanf 26375 leibpilem2 26436 areaf 26456 emcllem1 26490 igamf 26545 chtf 26602 chpf 26617 ppif 26624 muf 26634 bposlem7 26783 2lgslem1b 26885 pntrf 27056 pntrsumo1 27058 pntsf 27066 pntrlog2bndlem4 27073 pntrlog2bndlem5 27074 oldf 27342 newf 27343 leftf 27350 rightf 27351 normf 30364 hosubcli 31010 cnlnadjlem4 31311 cnlnadjlem6 31313 eulerpartlemsf 33347 fiblem 33386 signsvvf 33579 derangf 34148 snmlff 34309 ex-sategoelel12 34407 sinccvglem 34646 circum 34648 gg-divcn 35152 dnif 35339 f1omptsnlem 36206 phpreu 36461 poimirlem26 36503 cncfres 36622 lsatset 37849 clsk1independent 42783 lhe4.4ex1a 43074 absfico 43903 clim1fr1 44304 liminfgf 44461 limsup10ex 44476 liminf10ex 44477 dvsinax 44616 wallispilem5 44772 wallispi 44773 stirlinglem5 44781 stirlinglem13 44789 stirlinglem14 44790 stirlinglem15 44791 stirlingr 44793 fourierdlem43 44853 fourierdlem57 44866 fourierdlem58 44867 fourierdlem62 44871 fouriersw 44934 0ome 45232 sprsymrelf 46150 fmtnof1 46190 prmdvdsfmtnof 46241 uspgrsprf 46511 ackendofnn0 47324 |
Copyright terms: Public domain | W3C validator |