![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 7129 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ↦ cmpt 5230 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: harf 9595 r0weon 10049 dfac2a 10167 ackbij1lem10 10265 cff 10285 isf32lem9 10398 fin1a2lem2 10438 fin1a2lem4 10440 facmapnn 14320 wwlktovf 14991 cjf 15139 ref 15147 imf 15148 absf 15372 limsupcl 15505 limsupgf 15507 eff 16113 sinf 16156 cosf 16157 bitsf 16460 fnum 16775 fden 16776 prmgapprmo 17095 setcepi 18141 catcfuccl 18172 catcfucclOLD 18173 smndex1ibas 18925 smndex2dbas 18939 smndex2hbas 18941 staffval 20858 ocvfval 21701 pjfval 21743 pjpm 21745 psdmul 22187 leordtval2 23235 lecldbas 23242 nmfval 24616 nmoffn 24747 nmofval 24750 divcnOLD 24903 divcn 24905 xrhmeo 24990 tcphex 25264 tchnmfval 25275 ioorf 25621 dveflem 26031 tdeglem1 26111 resinf1o 26592 efifo 26603 logcnlem5 26702 resqrtcn 26806 asinf 26929 acosf 26931 atanf 26937 leibpilem2 26998 areaf 27018 emcllem1 27053 igamf 27108 chtf 27165 chpf 27180 ppif 27187 muf 27197 bposlem7 27348 2lgslem1b 27450 pntrf 27621 pntrsumo1 27623 pntsf 27631 pntrlog2bndlem4 27638 pntrlog2bndlem5 27639 oldf 27910 newf 27911 leftf 27918 rightf 27919 normf 31151 hosubcli 31797 cnlnadjlem4 32098 cnlnadjlem6 32100 zringfrac 33561 eulerpartlemsf 34340 fiblem 34379 signsvvf 34572 derangf 35152 snmlff 35313 ex-sategoelel12 35411 sinccvglem 35656 circum 35658 dnif 36456 f1omptsnlem 37318 phpreu 37590 poimirlem26 37632 cncfres 37751 lsatset 38971 clsk1independent 44035 lhe4.4ex1a 44324 absfico 45160 clim1fr1 45556 liminfgf 45713 limsup10ex 45728 liminf10ex 45729 dvsinax 45868 wallispilem5 46024 wallispi 46025 stirlinglem5 46033 stirlinglem13 46041 stirlinglem14 46042 stirlinglem15 46043 stirlingr 46045 fourierdlem43 46105 fourierdlem57 46118 fourierdlem58 46119 fourierdlem62 46123 fouriersw 46186 0ome 46484 sprsymrelf 47419 fmtnof1 47459 prmdvdsfmtnof 47510 uspgrsprf 47989 ackendofnn0 48533 |
Copyright terms: Public domain | W3C validator |