| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: harf 9570 r0weon 10024 dfac2a 10142 ackbij1lem10 10240 cff 10260 isf32lem9 10373 fin1a2lem2 10413 fin1a2lem4 10415 facmapnn 14301 wwlktovf 14973 cjf 15121 ref 15129 imf 15130 absf 15354 limsupcl 15487 limsupgf 15489 eff 16095 sinf 16140 cosf 16141 bitsf 16444 fnum 16759 fden 16760 prmgapprmo 17080 setcepi 18099 catcfuccl 18129 smndex1ibas 18876 smndex2dbas 18890 smndex2hbas 18892 staffval 20799 ocvfval 21624 pjfval 21664 pjpm 21666 psdmul 22102 psdmvr 22105 leordtval2 23148 lecldbas 23155 nmfval 24525 nmoffn 24648 nmofval 24651 divcnOLD 24806 divcn 24808 xrhmeo 24893 tcphex 25167 tchnmfval 25178 ioorf 25524 dveflem 25933 tdeglem1 26013 resinf1o 26495 efifo 26506 logcnlem5 26605 resqrtcn 26709 asinf 26832 acosf 26834 atanf 26840 leibpilem2 26901 areaf 26921 emcllem1 26956 igamf 27011 chtf 27068 chpf 27083 ppif 27090 muf 27100 bposlem7 27251 2lgslem1b 27353 pntrf 27524 pntrsumo1 27526 pntsf 27534 pntrlog2bndlem4 27541 pntrlog2bndlem5 27542 oldf 27813 newf 27814 leftf 27821 rightf 27822 normf 31050 hosubcli 31696 cnlnadjlem4 31997 cnlnadjlem6 31999 zringfrac 33515 eulerpartlemsf 34337 fiblem 34376 signsvvf 34557 derangf 35136 snmlff 35297 ex-sategoelel12 35395 sinccvglem 35640 circum 35642 dnif 36438 f1omptsnlem 37300 phpreu 37574 poimirlem26 37616 cncfres 37735 lsatset 38954 clsk1independent 44017 lhe4.4ex1a 44301 absfico 45190 clim1fr1 45578 liminfgf 45735 limsup10ex 45750 liminf10ex 45751 dvsinax 45890 wallispilem5 46046 wallispi 46047 stirlinglem5 46055 stirlinglem13 46063 stirlinglem14 46064 stirlinglem15 46065 stirlingr 46067 fourierdlem43 46127 fourierdlem57 46140 fourierdlem58 46141 fourierdlem62 46145 fouriersw 46208 0ome 46506 sprsymrelf 47457 fmtnof1 47497 prmdvdsfmtnof 47548 uspgrsprf 48069 ackendofnn0 48612 |
| Copyright terms: Public domain | W3C validator |