| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7043 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5170 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: harf 9444 r0weon 9903 dfac2a 10021 ackbij1lem10 10119 cff 10139 isf32lem9 10252 fin1a2lem2 10292 fin1a2lem4 10294 facmapnn 14192 wwlktovf 14863 cjf 15011 ref 15019 imf 15020 absf 15245 limsupcl 15380 limsupgf 15382 eff 15988 sinf 16033 cosf 16034 bitsf 16338 fnum 16653 fden 16654 prmgapprmo 16974 setcepi 17995 catcfuccl 18025 smndex1ibas 18808 smndex2dbas 18822 smndex2hbas 18824 staffval 20756 ocvfval 21603 pjfval 21643 pjpm 21645 psdmul 22081 psdmvr 22084 leordtval2 23127 lecldbas 23134 nmfval 24503 nmoffn 24626 nmofval 24629 divcnOLD 24784 divcn 24786 xrhmeo 24871 tcphex 25144 tchnmfval 25155 ioorf 25501 dveflem 25910 tdeglem1 25990 resinf1o 26472 efifo 26483 logcnlem5 26582 resqrtcn 26686 asinf 26809 acosf 26811 atanf 26817 leibpilem2 26878 areaf 26898 emcllem1 26933 igamf 26988 chtf 27045 chpf 27060 ppif 27067 muf 27077 bposlem7 27228 2lgslem1b 27330 pntrf 27501 pntrsumo1 27503 pntsf 27511 pntrlog2bndlem4 27518 pntrlog2bndlem5 27519 oldf 27798 newf 27799 leftf 27810 rightf 27811 normf 31103 hosubcli 31749 cnlnadjlem4 32050 cnlnadjlem6 32052 zringfrac 33519 eulerpartlemsf 34372 fiblem 34411 signsvvf 34592 derangf 35212 snmlff 35373 ex-sategoelel12 35471 sinccvglem 35716 circum 35718 dnif 36516 f1omptsnlem 37378 phpreu 37652 poimirlem26 37694 cncfres 37813 lsatset 39037 clsk1independent 44087 lhe4.4ex1a 44370 absfico 45263 clim1fr1 45649 liminfgf 45804 limsup10ex 45819 liminf10ex 45820 dvsinax 45959 wallispilem5 46115 wallispi 46116 stirlinglem5 46124 stirlinglem13 46132 stirlinglem14 46133 stirlinglem15 46134 stirlingr 46136 fourierdlem43 46196 fourierdlem57 46209 fourierdlem58 46210 fourierdlem62 46214 fouriersw 46277 0ome 46575 sprsymrelf 47534 fmtnof1 47574 prmdvdsfmtnof 47625 uspgrsprf 48185 ackendofnn0 48724 |
| Copyright terms: Public domain | W3C validator |