| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | 3 | fmpt 7044 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5173 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: harf 9450 r0weon 9906 dfac2a 10024 ackbij1lem10 10122 cff 10142 isf32lem9 10255 fin1a2lem2 10295 fin1a2lem4 10297 facmapnn 14192 wwlktovf 14863 cjf 15011 ref 15019 imf 15020 absf 15245 limsupcl 15380 limsupgf 15382 eff 15988 sinf 16033 cosf 16034 bitsf 16338 fnum 16653 fden 16654 prmgapprmo 16974 setcepi 17995 catcfuccl 18025 smndex1ibas 18774 smndex2dbas 18788 smndex2hbas 18790 staffval 20726 ocvfval 21573 pjfval 21613 pjpm 21615 psdmul 22051 psdmvr 22054 leordtval2 23097 lecldbas 23104 nmfval 24474 nmoffn 24597 nmofval 24600 divcnOLD 24755 divcn 24757 xrhmeo 24842 tcphex 25115 tchnmfval 25126 ioorf 25472 dveflem 25881 tdeglem1 25961 resinf1o 26443 efifo 26454 logcnlem5 26553 resqrtcn 26657 asinf 26780 acosf 26782 atanf 26788 leibpilem2 26849 areaf 26869 emcllem1 26904 igamf 26959 chtf 27016 chpf 27031 ppif 27038 muf 27048 bposlem7 27199 2lgslem1b 27301 pntrf 27472 pntrsumo1 27474 pntsf 27482 pntrlog2bndlem4 27489 pntrlog2bndlem5 27490 oldf 27767 newf 27768 leftf 27779 rightf 27780 normf 31067 hosubcli 31713 cnlnadjlem4 32014 cnlnadjlem6 32016 zringfrac 33491 eulerpartlemsf 34327 fiblem 34366 signsvvf 34547 derangf 35141 snmlff 35302 ex-sategoelel12 35400 sinccvglem 35645 circum 35647 dnif 36448 f1omptsnlem 37310 phpreu 37584 poimirlem26 37626 cncfres 37745 lsatset 38969 clsk1independent 44019 lhe4.4ex1a 44302 absfico 45196 clim1fr1 45582 liminfgf 45739 limsup10ex 45754 liminf10ex 45755 dvsinax 45894 wallispilem5 46050 wallispi 46051 stirlinglem5 46059 stirlinglem13 46067 stirlinglem14 46068 stirlinglem15 46069 stirlingr 46071 fourierdlem43 46131 fourierdlem57 46144 fourierdlem58 46145 fourierdlem62 46149 fouriersw 46212 0ome 46510 sprsymrelf 47479 fmtnof1 47519 prmdvdsfmtnof 47570 uspgrsprf 48130 ackendofnn0 48669 |
| Copyright terms: Public domain | W3C validator |