![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oe0m | Structured version Visualization version GIF version |
Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oe0m | โข (๐ด โ On โ (โ โo ๐ด) = (1o โ ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6408 | . . 3 โข โ โ On | |
2 | oev 8509 | . . 3 โข ((โ โ On โง ๐ด โ On) โ (โ โo ๐ด) = if(โ = โ , (1o โ ๐ด), (rec((๐ฅ โ V โฆ (๐ฅ ยทo โ )), 1o)โ๐ด))) | |
3 | 1, 2 | mpan 687 | . 2 โข (๐ด โ On โ (โ โo ๐ด) = if(โ = โ , (1o โ ๐ด), (rec((๐ฅ โ V โฆ (๐ฅ ยทo โ )), 1o)โ๐ด))) |
4 | eqid 2724 | . . 3 โข โ = โ | |
5 | 4 | iftruei 4527 | . 2 โข if(โ = โ , (1o โ ๐ด), (rec((๐ฅ โ V โฆ (๐ฅ ยทo โ )), 1o)โ๐ด)) = (1o โ ๐ด) |
6 | 3, 5 | eqtrdi 2780 | 1 โข (๐ด โ On โ (โ โo ๐ด) = (1o โ ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 Vcvv 3466 โ cdif 3937 โ c0 4314 ifcif 4520 โฆ cmpt 5221 Oncon0 6354 โcfv 6533 (class class class)co 7401 reccrdg 8404 1oc1o 8454 ยทo comu 8459 โo coe 8460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oexp 8467 |
This theorem is referenced by: oe0m0 8515 oe0m1 8516 cantnflem2 9681 oe0rif 42524 |
Copyright terms: Public domain | W3C validator |