| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0m | Structured version Visualization version GIF version | ||
| Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oe0m | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6367 | . . 3 ⊢ ∅ ∈ On | |
| 2 | oev 8435 | . . 3 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ↑o 𝐴) = if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴))) |
| 4 | eqid 2731 | . . 3 ⊢ ∅ = ∅ | |
| 5 | 4 | iftruei 4481 | . 2 ⊢ if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)) = (1o ∖ 𝐴) |
| 6 | 3, 5 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∅c0 4282 ifcif 4474 ↦ cmpt 5174 Oncon0 6312 ‘cfv 6487 (class class class)co 7352 reccrdg 8334 1oc1o 8384 ·o comu 8389 ↑o coe 8390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-suc 6318 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oexp 8397 |
| This theorem is referenced by: oe0m0 8441 oe0m1 8442 cantnflem2 9586 oe0rif 43383 |
| Copyright terms: Public domain | W3C validator |