MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m Structured version   Visualization version   GIF version

Theorem oe0m 8146
Description: Ordinal exponentiation with zero mantissa. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0m (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))

Proof of Theorem oe0m
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 6215 . . 3 ∅ ∈ On
2 oev 8142 . . 3 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ↑o 𝐴) = if(∅ = ∅, (1o𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)))
31, 2mpan 690 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ = ∅, (1o𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)))
4 eqid 2759 . . 3 ∅ = ∅
54iftruei 4420 . 2 if(∅ = ∅, (1o𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)) = (1o𝐴)
63, 5eqtrdi 2810 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  Vcvv 3407  cdif 3851  c0 4221  ifcif 4413  cmpt 5105  Oncon0 6162  cfv 6328  (class class class)co 7143  reccrdg 8048  1oc1o 8098   ·o comu 8103  o coe 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-suc 6168  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oexp 8111
This theorem is referenced by:  oe0m0  8148  oe0m1  8149  cantnflem2  9171
  Copyright terms: Public domain W3C validator