![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oe0m | Structured version Visualization version GIF version |
Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oe0m | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6449 | . . 3 ⊢ ∅ ∈ On | |
2 | oev 8570 | . . 3 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ↑o 𝐴) = if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴))) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴))) |
4 | eqid 2740 | . . 3 ⊢ ∅ = ∅ | |
5 | 4 | iftruei 4555 | . 2 ⊢ if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)) = (1o ∖ 𝐴) |
6 | 3, 5 | eqtrdi 2796 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 ifcif 4548 ↦ cmpt 5249 Oncon0 6395 ‘cfv 6573 (class class class)co 7448 reccrdg 8465 1oc1o 8515 ·o comu 8520 ↑o coe 8521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oexp 8528 |
This theorem is referenced by: oe0m0 8576 oe0m1 8577 cantnflem2 9759 oe0rif 43247 |
Copyright terms: Public domain | W3C validator |