MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m Structured version   Visualization version   GIF version

Theorem oe0m 8485
Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0m (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))

Proof of Theorem oe0m
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 6390 . . 3 ∅ ∈ On
2 oev 8481 . . 3 ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ↑o 𝐴) = if(∅ = ∅, (1o𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)))
31, 2mpan 690 . 2 (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ = ∅, (1o𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)))
4 eqid 2730 . . 3 ∅ = ∅
54iftruei 4498 . 2 if(∅ = ∅, (1o𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)) = (1o𝐴)
63, 5eqtrdi 2781 1 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  c0 4299  ifcif 4491  cmpt 5191  Oncon0 6335  cfv 6514  (class class class)co 7390  reccrdg 8380  1oc1o 8430   ·o comu 8435  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oexp 8443
This theorem is referenced by:  oe0m0  8487  oe0m1  8488  cantnflem2  9650  oe0rif  43281
  Copyright terms: Public domain W3C validator