Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oe0m | Structured version Visualization version GIF version |
Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oe0m | ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6266 | . . 3 ⊢ ∅ ∈ On | |
2 | oev 8241 | . . 3 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ On) → (∅ ↑o 𝐴) = if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴))) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴))) |
4 | eqid 2737 | . . 3 ⊢ ∅ = ∅ | |
5 | 4 | iftruei 4446 | . 2 ⊢ if(∅ = ∅, (1o ∖ 𝐴), (rec((𝑥 ∈ V ↦ (𝑥 ·o ∅)), 1o)‘𝐴)) = (1o ∖ 𝐴) |
6 | 3, 5 | eqtrdi 2794 | 1 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∖ cdif 3863 ∅c0 4237 ifcif 4439 ↦ cmpt 5135 Oncon0 6213 ‘cfv 6380 (class class class)co 7213 reccrdg 8145 1oc1o 8195 ·o comu 8200 ↑o coe 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oexp 8208 |
This theorem is referenced by: oe0m0 8247 oe0m1 8248 cantnflem2 9305 |
Copyright terms: Public domain | W3C validator |