MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oevn0 Structured version   Visualization version   GIF version

Theorem oevn0 8465
Description: Value of ordinal exponentiation at a nonzero base. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oevn0 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง โˆ… โˆˆ ๐ด) โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
Distinct variable group:   ๐‘ฅ,๐ด
Allowed substitution hint:   ๐ต(๐‘ฅ)

Proof of Theorem oevn0
StepHypRef Expression
1 on0eln0 6377 . . . . 5 (๐ด โˆˆ On โ†’ (โˆ… โˆˆ ๐ด โ†” ๐ด โ‰  โˆ…))
2 df-ne 2941 . . . . 5 (๐ด โ‰  โˆ… โ†” ยฌ ๐ด = โˆ…)
31, 2bitrdi 287 . . . 4 (๐ด โˆˆ On โ†’ (โˆ… โˆˆ ๐ด โ†” ยฌ ๐ด = โˆ…))
43adantr 482 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… โˆˆ ๐ด โ†” ยฌ ๐ด = โˆ…))
5 oev 8464 . . . . 5 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด โ†‘o ๐ต) = if(๐ด = โˆ…, (1o โˆ– ๐ต), (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
6 iffalse 4499 . . . . 5 (ยฌ ๐ด = โˆ… โ†’ if(๐ด = โˆ…, (1o โˆ– ๐ต), (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
75, 6sylan9eq 2793 . . . 4 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง ยฌ ๐ด = โˆ…) โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
87ex 414 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (ยฌ ๐ด = โˆ… โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
94, 8sylbid 239 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… โˆˆ ๐ด โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
109imp 408 1 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง โˆ… โˆˆ ๐ด) โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2940  Vcvv 3447   โˆ– cdif 3911  โˆ…c0 4286  ifcif 4490   โ†ฆ cmpt 5192  Oncon0 6321  โ€˜cfv 6500  (class class class)co 7361  reccrdg 8359  1oc1o 8409   ยทo comu 8414   โ†‘o coe 8415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-suc 6327  df-iota 6452  df-fun 6502  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-oexp 8422
This theorem is referenced by:  oe0  8472  oev2  8473  oesuclem  8475  oelim  8484
  Copyright terms: Public domain W3C validator