![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oevn0 | Structured version Visualization version GIF version |
Description: Value of ordinal exponentiation at a nonzero base. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oevn0 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on0eln0 6442 | . . . . 5 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
2 | df-ne 2939 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
3 | 1, 2 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ ¬ 𝐴 = ∅)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 ↔ ¬ 𝐴 = ∅)) |
5 | oev 8551 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) | |
6 | iffalse 4540 | . . . . 5 ⊢ (¬ 𝐴 = ∅ → if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
7 | 5, 6 | sylan9eq 2795 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ¬ 𝐴 = ∅) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
8 | 7 | ex 412 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 = ∅ → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
9 | 4, 8 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) |
10 | 9 | imp 406 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∖ cdif 3960 ∅c0 4339 ifcif 4531 ↦ cmpt 5231 Oncon0 6386 ‘cfv 6563 (class class class)co 7431 reccrdg 8448 1oc1o 8498 ·o comu 8503 ↑o coe 8504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oexp 8511 |
This theorem is referenced by: oe0 8559 oev2 8560 oesuclem 8562 oelim 8571 |
Copyright terms: Public domain | W3C validator |