MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oevn0 Structured version   Visualization version   GIF version

Theorem oevn0 8514
Description: Value of ordinal exponentiation at a nonzero base. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oevn0 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง โˆ… โˆˆ ๐ด) โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
Distinct variable group:   ๐‘ฅ,๐ด
Allowed substitution hint:   ๐ต(๐‘ฅ)

Proof of Theorem oevn0
StepHypRef Expression
1 on0eln0 6420 . . . . 5 (๐ด โˆˆ On โ†’ (โˆ… โˆˆ ๐ด โ†” ๐ด โ‰  โˆ…))
2 df-ne 2941 . . . . 5 (๐ด โ‰  โˆ… โ†” ยฌ ๐ด = โˆ…)
31, 2bitrdi 286 . . . 4 (๐ด โˆˆ On โ†’ (โˆ… โˆˆ ๐ด โ†” ยฌ ๐ด = โˆ…))
43adantr 481 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… โˆˆ ๐ด โ†” ยฌ ๐ด = โˆ…))
5 oev 8513 . . . . 5 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด โ†‘o ๐ต) = if(๐ด = โˆ…, (1o โˆ– ๐ต), (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
6 iffalse 4537 . . . . 5 (ยฌ ๐ด = โˆ… โ†’ if(๐ด = โˆ…, (1o โˆ– ๐ต), (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
75, 6sylan9eq 2792 . . . 4 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง ยฌ ๐ด = โˆ…) โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
87ex 413 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (ยฌ ๐ด = โˆ… โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
94, 8sylbid 239 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… โˆˆ ๐ด โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต)))
109imp 407 1 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง โˆ… โˆˆ ๐ด) โ†’ (๐ด โ†‘o ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ ยทo ๐ด)), 1o)โ€˜๐ต))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106   โ‰  wne 2940  Vcvv 3474   โˆ– cdif 3945  โˆ…c0 4322  ifcif 4528   โ†ฆ cmpt 5231  Oncon0 6364  โ€˜cfv 6543  (class class class)co 7408  reccrdg 8408  1oc1o 8458   ยทo comu 8463   โ†‘o coe 8464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oexp 8471
This theorem is referenced by:  oe0  8521  oev2  8522  oesuclem  8524  oelim  8533
  Copyright terms: Public domain W3C validator