MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oevn0 Structured version   Visualization version   GIF version

Theorem oevn0 8134
Description: Value of ordinal exponentiation at a nonzero mantissa. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oevn0 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oevn0
StepHypRef Expression
1 on0eln0 6240 . . . . 5 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
2 df-ne 3017 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
31, 2syl6bb 289 . . . 4 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ ¬ 𝐴 = ∅))
43adantr 483 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 ↔ ¬ 𝐴 = ∅))
5 oev 8133 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = if(𝐴 = ∅, (1o𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
6 iffalse 4475 . . . . 5 𝐴 = ∅ → if(𝐴 = ∅, (1o𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
75, 6sylan9eq 2876 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ¬ 𝐴 = ∅) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
87ex 415 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 = ∅ → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
94, 8sylbid 242 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)))
109imp 409 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  c0 4290  ifcif 4466  cmpt 5138  Oncon0 6185  cfv 6349  (class class class)co 7150  reccrdg 8039  1oc1o 8089   ·o comu 8094  o coe 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-suc 6191  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oexp 8102
This theorem is referenced by:  oe0  8141  oev2  8142  oesuclem  8144  oelim  8153
  Copyright terms: Public domain W3C validator