![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oevn0 | Structured version Visualization version GIF version |
Description: Value of ordinal exponentiation at a nonzero mantissa. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oevn0 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on0eln0 5997 | . . . . 5 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
2 | df-ne 2973 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
3 | 1, 2 | syl6bb 279 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ ¬ 𝐴 = ∅)) |
4 | 3 | adantr 473 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 ↔ ¬ 𝐴 = ∅)) |
5 | oev 7835 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) | |
6 | iffalse 4287 | . . . . 5 ⊢ (¬ 𝐴 = ∅ → if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) | |
7 | 5, 6 | sylan9eq 2854 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ¬ 𝐴 = ∅) → (𝐴 ↑𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) |
8 | 7 | ex 402 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 = ∅ → (𝐴 ↑𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
9 | 4, 8 | sylbid 232 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐴 ↑𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
10 | 9 | imp 396 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 Vcvv 3386 ∖ cdif 3767 ∅c0 4116 ifcif 4278 ↦ cmpt 4923 Oncon0 5942 ‘cfv 6102 (class class class)co 6879 reccrdg 7745 1𝑜c1o 7793 ·𝑜 comu 7798 ↑𝑜 coe 7799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-suc 5948 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oexp 7806 |
This theorem is referenced by: oe0 7843 oev2 7844 oesuclem 7846 oelim 7855 |
Copyright terms: Public domain | W3C validator |