MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc2 Structured version   Visualization version   GIF version

Theorem ofc2 7700
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
ofc2.1 (𝜑𝐴𝑉)
ofc2.2 (𝜑𝐵𝑊)
ofc2.3 (𝜑𝐹 Fn 𝐴)
ofc2.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc2 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))

Proof of Theorem ofc2
StepHypRef Expression
1 ofc2.3 . 2 (𝜑𝐹 Fn 𝐴)
2 ofc2.2 . . 3 (𝜑𝐵𝑊)
3 fnconstg 6766 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
5 ofc2.1 . 2 (𝜑𝐴𝑉)
6 inidm 4202 . 2 (𝐴𝐴) = 𝐴
7 ofc2.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
8 fvconst2g 7194 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
92, 8sylan 580 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
101, 4, 5, 5, 6, 7, 9ofval 7682 1 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601   × cxp 5652   Fn wfn 6526  cfv 6531  (class class class)co 7405  f cof 7669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671
This theorem is referenced by:  lflvscl  39095  lkrsc  39115  ldualvsval  39156
  Copyright terms: Public domain W3C validator