Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofc2 | Structured version Visualization version GIF version |
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.) |
Ref | Expression |
---|---|
ofc2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofc2.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
Ref | Expression |
---|---|
ofc2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc2.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofc2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fnconstg 6567 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
5 | ofc2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | inidm 4110 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | ofc2.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
8 | fvconst2g 6977 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
9 | 2, 8 | sylan 583 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
10 | 1, 4, 5, 5, 6, 7, 9 | ofval 7438 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {csn 4517 × cxp 5524 Fn wfn 6335 ‘cfv 6340 (class class class)co 7173 ∘f cof 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 |
This theorem is referenced by: lflvscl 36737 lkrsc 36757 ldualvsval 36798 |
Copyright terms: Public domain | W3C validator |