MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc2 Structured version   Visualization version   GIF version

Theorem ofc2 7634
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
ofc2.1 (𝜑𝐴𝑉)
ofc2.2 (𝜑𝐵𝑊)
ofc2.3 (𝜑𝐹 Fn 𝐴)
ofc2.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc2 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))

Proof of Theorem ofc2
StepHypRef Expression
1 ofc2.3 . 2 (𝜑𝐹 Fn 𝐴)
2 ofc2.2 . . 3 (𝜑𝐵𝑊)
3 fnconstg 6706 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
5 ofc2.1 . 2 (𝜑𝐴𝑉)
6 inidm 4172 . 2 (𝐴𝐴) = 𝐴
7 ofc2.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
8 fvconst2g 7131 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
92, 8sylan 580 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
101, 4, 5, 5, 6, 7, 9ofval 7616 1 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4571   × cxp 5609   Fn wfn 6471  cfv 6476  (class class class)co 7341  f cof 7603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605
This theorem is referenced by:  lflvscl  39116  lkrsc  39136  ldualvsval  39177
  Copyright terms: Public domain W3C validator