MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc2 Structured version   Visualization version   GIF version

Theorem ofc2 7685
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
ofc2.1 (𝜑𝐴𝑉)
ofc2.2 (𝜑𝐵𝑊)
ofc2.3 (𝜑𝐹 Fn 𝐴)
ofc2.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc2 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))

Proof of Theorem ofc2
StepHypRef Expression
1 ofc2.3 . 2 (𝜑𝐹 Fn 𝐴)
2 ofc2.2 . . 3 (𝜑𝐵𝑊)
3 fnconstg 6751 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
5 ofc2.1 . 2 (𝜑𝐴𝑉)
6 inidm 4193 . 2 (𝐴𝐴) = 𝐴
7 ofc2.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
8 fvconst2g 7179 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
92, 8sylan 580 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
101, 4, 5, 5, 6, 7, 9ofval 7667 1 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4592   × cxp 5639   Fn wfn 6509  cfv 6514  (class class class)co 7390  f cof 7654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656
This theorem is referenced by:  lflvscl  39077  lkrsc  39097  ldualvsval  39138
  Copyright terms: Public domain W3C validator