Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofc2 | Structured version Visualization version GIF version |
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.) |
Ref | Expression |
---|---|
ofc2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofc2.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
Ref | Expression |
---|---|
ofc2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc2.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofc2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fnconstg 6688 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
5 | ofc2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | inidm 4158 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | ofc2.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
8 | fvconst2g 7105 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
9 | 2, 8 | sylan 581 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
10 | 1, 4, 5, 5, 6, 7, 9 | ofval 7572 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {csn 4565 × cxp 5594 Fn wfn 6449 ‘cfv 6454 (class class class)co 7303 ∘f cof 7559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5496 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-ov 7306 df-oprab 7307 df-mpo 7308 df-of 7561 |
This theorem is referenced by: lflvscl 37130 lkrsc 37150 ldualvsval 37191 |
Copyright terms: Public domain | W3C validator |