MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc2 Structured version   Visualization version   GIF version

Theorem ofc2 7454
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
ofc2.1 (𝜑𝐴𝑉)
ofc2.2 (𝜑𝐵𝑊)
ofc2.3 (𝜑𝐹 Fn 𝐴)
ofc2.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc2 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))

Proof of Theorem ofc2
StepHypRef Expression
1 ofc2.3 . 2 (𝜑𝐹 Fn 𝐴)
2 ofc2.2 . . 3 (𝜑𝐵𝑊)
3 fnconstg 6567 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
5 ofc2.1 . 2 (𝜑𝐴𝑉)
6 inidm 4110 . 2 (𝐴𝐴) = 𝐴
7 ofc2.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
8 fvconst2g 6977 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
92, 8sylan 583 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
101, 4, 5, 5, 6, 7, 9ofval 7438 1 ((𝜑𝑋𝐴) → ((𝐹f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {csn 4517   × cxp 5524   Fn wfn 6335  cfv 6340  (class class class)co 7173  f cof 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428
This theorem is referenced by:  lflvscl  36737  lkrsc  36757  ldualvsval  36798
  Copyright terms: Public domain W3C validator