![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofc2 | Structured version Visualization version GIF version |
Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.) |
Ref | Expression |
---|---|
ofc2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofc2.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
Ref | Expression |
---|---|
ofc2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc2.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofc2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fnconstg 6770 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
5 | ofc2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | inidm 4211 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | ofc2.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
8 | fvconst2g 7196 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
9 | 2, 8 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
10 | 1, 4, 5, 5, 6, 7, 9 | ofval 7675 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4621 × cxp 5665 Fn wfn 6529 ‘cfv 6534 (class class class)co 7402 ∘f cof 7662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 |
This theorem is referenced by: lflvscl 38441 lkrsc 38461 ldualvsval 38502 |
Copyright terms: Public domain | W3C validator |