MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc1 Structured version   Visualization version   GIF version

Theorem ofc1 7725
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
ofc1.1 (𝜑𝐴𝑉)
ofc1.2 (𝜑𝐵𝑊)
ofc1.3 (𝜑𝐹 Fn 𝐴)
ofc1.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofc1
StepHypRef Expression
1 ofc1.2 . . 3 (𝜑𝐵𝑊)
2 fnconstg 6796 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofc1.3 . 2 (𝜑𝐹 Fn 𝐴)
5 ofc1.1 . 2 (𝜑𝐴𝑉)
6 inidm 4227 . 2 (𝐴𝐴) = 𝐴
7 fvconst2g 7222 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
81, 7sylan 580 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
9 ofc1.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
103, 4, 5, 5, 6, 8, 9ofval 7708 1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4626   × cxp 5683   Fn wfn 6556  cfv 6561  (class class class)co 7431  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697
This theorem is referenced by:  ofnegsub  12264  pwsvscaval  17540  lmhmvsca  21044  psrvscaval  21970  mplvscaval  22036  coe1sclmulfv  22286  mamuvs1  22409  mamuvs2  22410  matvscacell  22442  mdetrsca  22609  mbfmulc2lem  25682  i1fmulclem  25737  itg1mulc  25739  itg2monolem1  25785  uc1pmon1p  26191  coemulc  26294  basellem9  27132  mhphf  42607  ofdivrec  44345
  Copyright terms: Public domain W3C validator