| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofc1 | Structured version Visualization version GIF version | ||
| Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofc1.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofc1.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofc1.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofc1.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| Ref | Expression |
|---|---|
| ofc1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofc1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | fnconstg 6751 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 4 | ofc1.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | ofc1.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | inidm 4193 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | fvconst2g 7179 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
| 8 | 1, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 9 | ofc1.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 10 | 3, 4, 5, 5, 6, 8, 9 | ofval 7667 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 |
| This theorem is referenced by: ofnegsub 12191 pwsvscaval 17465 lmhmvsca 20959 psrvscaval 21866 mplvscaval 21932 coe1sclmulfv 22176 mamuvs1 22299 mamuvs2 22300 matvscacell 22330 mdetrsca 22497 mbfmulc2lem 25555 i1fmulclem 25610 itg1mulc 25612 itg2monolem1 25658 uc1pmon1p 26064 coemulc 26167 basellem9 27006 mhphf 42592 ofdivrec 44322 |
| Copyright terms: Public domain | W3C validator |