MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc1 Structured version   Visualization version   GIF version

Theorem ofc1 7681
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
ofc1.1 (𝜑𝐴𝑉)
ofc1.2 (𝜑𝐵𝑊)
ofc1.3 (𝜑𝐹 Fn 𝐴)
ofc1.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofc1
StepHypRef Expression
1 ofc1.2 . . 3 (𝜑𝐵𝑊)
2 fnconstg 6748 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofc1.3 . 2 (𝜑𝐹 Fn 𝐴)
5 ofc1.1 . 2 (𝜑𝐴𝑉)
6 inidm 4190 . 2 (𝐴𝐴) = 𝐴
7 fvconst2g 7176 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
81, 7sylan 580 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
9 ofc1.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
103, 4, 5, 5, 6, 8, 9ofval 7664 1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589   × cxp 5636   Fn wfn 6506  cfv 6511  (class class class)co 7387  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by:  ofnegsub  12184  pwsvscaval  17458  lmhmvsca  20952  psrvscaval  21859  mplvscaval  21925  coe1sclmulfv  22169  mamuvs1  22292  mamuvs2  22293  matvscacell  22323  mdetrsca  22490  mbfmulc2lem  25548  i1fmulclem  25603  itg1mulc  25605  itg2monolem1  25651  uc1pmon1p  26057  coemulc  26160  basellem9  26999  mhphf  42585  ofdivrec  44315
  Copyright terms: Public domain W3C validator