MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc1 Structured version   Visualization version   GIF version

Theorem ofc1 7692
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
ofc1.1 (𝜑𝐴𝑉)
ofc1.2 (𝜑𝐵𝑊)
ofc1.3 (𝜑𝐹 Fn 𝐴)
ofc1.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofc1
StepHypRef Expression
1 ofc1.2 . . 3 (𝜑𝐵𝑊)
2 fnconstg 6776 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofc1.3 . 2 (𝜑𝐹 Fn 𝐴)
5 ofc1.1 . 2 (𝜑𝐴𝑉)
6 inidm 4217 . 2 (𝐴𝐴) = 𝐴
7 fvconst2g 7199 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
81, 7sylan 580 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
9 ofc1.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
103, 4, 5, 5, 6, 8, 9ofval 7677 1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4627   × cxp 5673   Fn wfn 6535  cfv 6540  (class class class)co 7405  f cof 7664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666
This theorem is referenced by:  ofnegsub  12206  pwsvscaval  17437  lmhmvsca  20648  psrvscaval  21502  mplvscaval  21566  coe1sclmulfv  21796  mamuvs1  21896  mamuvs2  21897  matvscacell  21929  mdetrsca  22096  mbfmulc2lem  25155  i1fmulclem  25211  itg1mulc  25213  itg2monolem1  25259  uc1pmon1p  25660  coemulc  25760  basellem9  26582  mhphf  41166  ofdivrec  43070
  Copyright terms: Public domain W3C validator