MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofc1 Structured version   Visualization version   GIF version

Theorem ofc1 7690
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
ofc1.1 (𝜑𝐴𝑉)
ofc1.2 (𝜑𝐵𝑊)
ofc1.3 (𝜑𝐹 Fn 𝐴)
ofc1.4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
Assertion
Ref Expression
ofc1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofc1
StepHypRef Expression
1 ofc1.2 . . 3 (𝜑𝐵𝑊)
2 fnconstg 6770 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofc1.3 . 2 (𝜑𝐹 Fn 𝐴)
5 ofc1.1 . 2 (𝜑𝐴𝑉)
6 inidm 4211 . 2 (𝐴𝐴) = 𝐴
7 fvconst2g 7196 . . 3 ((𝐵𝑊𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
81, 7sylan 579 . 2 ((𝜑𝑋𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
9 ofc1.4 . 2 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
103, 4, 5, 5, 6, 8, 9ofval 7675 1 ((𝜑𝑋𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {csn 4621   × cxp 5665   Fn wfn 6529  cfv 6534  (class class class)co 7402  f cof 7662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664
This theorem is referenced by:  ofnegsub  12208  pwsvscaval  17442  lmhmvsca  20885  psrvscaval  21823  mplvscaval  21887  coe1sclmulfv  22126  mamuvs1  22229  mamuvs2  22230  matvscacell  22262  mdetrsca  22429  mbfmulc2lem  25500  i1fmulclem  25556  itg1mulc  25558  itg2monolem1  25604  uc1pmon1p  26011  coemulc  26111  basellem9  26940  mhphf  41662  ofdivrec  43599
  Copyright terms: Public domain W3C validator