| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofc1 | Structured version Visualization version GIF version | ||
| Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofc1.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofc1.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofc1.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofc1.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| Ref | Expression |
|---|---|
| ofc1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofc1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | fnconstg 6766 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 4 | ofc1.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | ofc1.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | inidm 4202 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | fvconst2g 7194 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
| 8 | 1, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 9 | ofc1.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 10 | 3, 4, 5, 5, 6, 8, 9 | ofval 7682 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘f 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 |
| This theorem is referenced by: ofnegsub 12238 pwsvscaval 17509 lmhmvsca 21003 psrvscaval 21910 mplvscaval 21976 coe1sclmulfv 22220 mamuvs1 22343 mamuvs2 22344 matvscacell 22374 mdetrsca 22541 mbfmulc2lem 25600 i1fmulclem 25655 itg1mulc 25657 itg2monolem1 25703 uc1pmon1p 26109 coemulc 26212 basellem9 27051 mhphf 42620 ofdivrec 44350 |
| Copyright terms: Public domain | W3C validator |