Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrsc Structured version   Visualization version   GIF version

Theorem lkrsc 39080
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
lkrsc.o 0 = (0g𝐷)
lkrsc.e (𝜑𝑅0 )
Assertion
Ref Expression
lkrsc (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))

Proof of Theorem lkrsc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lkrsc.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
21fvexi 6836 . . . . . . . 8 𝑉 ∈ V
32a1i 11 . . . . . . 7 (𝜑𝑉 ∈ V)
4 lkrsc.r . . . . . . 7 (𝜑𝑅𝐾)
5 lkrsc.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
6 lkrsc.g . . . . . . . . 9 (𝜑𝐺𝐹)
7 lkrsc.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
8 lkrsc.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
9 lkrsc.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 39046 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
115, 6, 10syl2anc 584 . . . . . . . 8 (𝜑𝐺:𝑉𝐾)
1211ffnd 6653 . . . . . . 7 (𝜑𝐺 Fn 𝑉)
13 eqidd 2730 . . . . . . 7 ((𝜑𝑣𝑉) → (𝐺𝑣) = (𝐺𝑣))
143, 4, 12, 13ofc2 7642 . . . . . 6 ((𝜑𝑣𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺𝑣) · 𝑅))
1514eqeq1d 2731 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺𝑣) · 𝑅) = 0 ))
16 lkrsc.o . . . . . 6 0 = (0g𝐷)
17 lkrsc.t . . . . . 6 · = (.r𝐷)
187lvecdrng 21009 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
195, 18syl 17 . . . . . . 7 (𝜑𝐷 ∈ DivRing)
2019adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝐷 ∈ DivRing)
215adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
226adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝐺𝐹)
23 simpr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
247, 8, 1, 9lflcl 39047 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
2521, 22, 23, 24syl3anc 1373 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
264adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅𝐾)
27 lkrsc.e . . . . . . 7 (𝜑𝑅0 )
2827adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅0 )
298, 16, 17, 20, 25, 26, 28drngmuleq0 20648 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺𝑣) · 𝑅) = 0 ↔ (𝐺𝑣) = 0 ))
3015, 29bitrd 279 . . . 4 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺𝑣) = 0 ))
3130pm5.32da 579 . . 3 (𝜑 → ((𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
32 lveclmod 21010 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
335, 32syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
341, 7, 8, 17, 9, 33, 6, 4lflvscl 39060 . . . 4 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
35 lkrsc.l . . . . 5 𝐿 = (LKer‘𝑊)
361, 7, 16, 9, 35ellkr 39072 . . . 4 ((𝑊 ∈ LVec ∧ (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
375, 34, 36syl2anc 584 . . 3 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
381, 7, 16, 9, 35ellkr 39072 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
395, 6, 38syl2anc 584 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
4031, 37, 393bitr4d 311 . 2 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿𝐺)))
4140eqrdv 2727 1 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  {csn 4577   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164  0gc0g 17343  DivRingcdr 20614  LModclmod 20763  LVecclvec 21006  LFnlclfn 39040  LKerclk 39068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20765  df-lvec 21007  df-lfl 39041  df-lkr 39069
This theorem is referenced by:  lkrscss  39081  ldualkrsc  39150
  Copyright terms: Public domain W3C validator