Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrsc Structured version   Visualization version   GIF version

Theorem lkrsc 36227
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
lkrsc.o 0 = (0g𝐷)
lkrsc.e (𝜑𝑅0 )
Assertion
Ref Expression
lkrsc (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))

Proof of Theorem lkrsc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lkrsc.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
21fvexi 6679 . . . . . . . 8 𝑉 ∈ V
32a1i 11 . . . . . . 7 (𝜑𝑉 ∈ V)
4 lkrsc.r . . . . . . 7 (𝜑𝑅𝐾)
5 lkrsc.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
6 lkrsc.g . . . . . . . . 9 (𝜑𝐺𝐹)
7 lkrsc.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
8 lkrsc.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
9 lkrsc.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 36193 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
115, 6, 10syl2anc 586 . . . . . . . 8 (𝜑𝐺:𝑉𝐾)
1211ffnd 6510 . . . . . . 7 (𝜑𝐺 Fn 𝑉)
13 eqidd 2822 . . . . . . 7 ((𝜑𝑣𝑉) → (𝐺𝑣) = (𝐺𝑣))
143, 4, 12, 13ofc2 7427 . . . . . 6 ((𝜑𝑣𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺𝑣) · 𝑅))
1514eqeq1d 2823 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺𝑣) · 𝑅) = 0 ))
16 lkrsc.o . . . . . 6 0 = (0g𝐷)
17 lkrsc.t . . . . . 6 · = (.r𝐷)
187lvecdrng 19871 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
195, 18syl 17 . . . . . . 7 (𝜑𝐷 ∈ DivRing)
2019adantr 483 . . . . . 6 ((𝜑𝑣𝑉) → 𝐷 ∈ DivRing)
215adantr 483 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
226adantr 483 . . . . . . 7 ((𝜑𝑣𝑉) → 𝐺𝐹)
23 simpr 487 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
247, 8, 1, 9lflcl 36194 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
2521, 22, 23, 24syl3anc 1367 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
264adantr 483 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅𝐾)
27 lkrsc.e . . . . . . 7 (𝜑𝑅0 )
2827adantr 483 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅0 )
298, 16, 17, 20, 25, 26, 28drngmuleq0 19519 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺𝑣) · 𝑅) = 0 ↔ (𝐺𝑣) = 0 ))
3015, 29bitrd 281 . . . 4 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺𝑣) = 0 ))
3130pm5.32da 581 . . 3 (𝜑 → ((𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
32 lveclmod 19872 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
335, 32syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
341, 7, 8, 17, 9, 33, 6, 4lflvscl 36207 . . . 4 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
35 lkrsc.l . . . . 5 𝐿 = (LKer‘𝑊)
361, 7, 16, 9, 35ellkr 36219 . . . 4 ((𝑊 ∈ LVec ∧ (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
375, 34, 36syl2anc 586 . . 3 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
381, 7, 16, 9, 35ellkr 36219 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
395, 6, 38syl2anc 586 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
4031, 37, 393bitr4d 313 . 2 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿𝐺)))
4140eqrdv 2819 1 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  {csn 4561   × cxp 5548  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562  0gc0g 16707  DivRingcdr 19496  LModclmod 19628  LVecclvec 19868  LFnlclfn 36187  LKerclk 36215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19498  df-lmod 19630  df-lvec 19869  df-lfl 36188  df-lkr 36216
This theorem is referenced by:  lkrscss  36228  ldualkrsc  36297
  Copyright terms: Public domain W3C validator