Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrsc | Structured version Visualization version GIF version |
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
Ref | Expression |
---|---|
lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
lkrsc.t | ⊢ · = (.r‘𝐷) |
lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
lkrsc.o | ⊢ 0 = (0g‘𝐷) |
lkrsc.e | ⊢ (𝜑 → 𝑅 ≠ 0 ) |
Ref | Expression |
---|---|
lkrsc | ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrsc.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6770 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lkrsc.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
5 | lkrsc.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lkrsc.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
7 | lkrsc.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
8 | lkrsc.k | . . . . . . . . . 10 ⊢ 𝐾 = (Base‘𝐷) | |
9 | lkrsc.f | . . . . . . . . . 10 ⊢ 𝐹 = (LFnl‘𝑊) | |
10 | 7, 8, 1, 9 | lflf 37004 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
11 | 5, 6, 10 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
12 | 11 | ffnd 6585 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
13 | eqidd 2739 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) = (𝐺‘𝑣)) | |
14 | 3, 4, 12, 13 | ofc2 7538 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺‘𝑣) · 𝑅)) |
15 | 14 | eqeq1d 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺‘𝑣) · 𝑅) = 0 )) |
16 | lkrsc.o | . . . . . 6 ⊢ 0 = (0g‘𝐷) | |
17 | lkrsc.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
18 | 7 | lvecdrng 20282 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ DivRing) |
19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ DivRing) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐷 ∈ DivRing) |
21 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
22 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
23 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
24 | 7, 8, 1, 9 | lflcl 37005 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
25 | 21, 22, 23, 24 | syl3anc 1369 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
26 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ∈ 𝐾) |
27 | lkrsc.e | . . . . . . 7 ⊢ (𝜑 → 𝑅 ≠ 0 ) | |
28 | 27 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ≠ 0 ) |
29 | 8, 16, 17, 20, 25, 26, 28 | drngmuleq0 19929 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺‘𝑣) · 𝑅) = 0 ↔ (𝐺‘𝑣) = 0 )) |
30 | 15, 29 | bitrd 278 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺‘𝑣) = 0 )) |
31 | 30 | pm5.32da 578 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
32 | lveclmod 20283 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
33 | 5, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
34 | 1, 7, 8, 17, 9, 33, 6, 4 | lflvscl 37018 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) |
35 | lkrsc.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
36 | 1, 7, 16, 9, 35 | ellkr 37030 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
37 | 5, 34, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
38 | 1, 7, 16, 9, 35 | ellkr 37030 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
39 | 5, 6, 38 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
40 | 31, 37, 39 | 3bitr4d 310 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿‘𝐺))) |
41 | 40 | eqrdv 2736 | 1 ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 {csn 4558 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 .rcmulr 16889 Scalarcsca 16891 0gc0g 17067 DivRingcdr 19906 LModclmod 20038 LVecclvec 20279 LFnlclfn 36998 LKerclk 37026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lvec 20280 df-lfl 36999 df-lkr 37027 |
This theorem is referenced by: lkrscss 37039 ldualkrsc 37108 |
Copyright terms: Public domain | W3C validator |