Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrsc Structured version   Visualization version   GIF version

Theorem lkrsc 36731
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
lkrsc.o 0 = (0g𝐷)
lkrsc.e (𝜑𝑅0 )
Assertion
Ref Expression
lkrsc (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))

Proof of Theorem lkrsc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lkrsc.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
21fvexi 6689 . . . . . . . 8 𝑉 ∈ V
32a1i 11 . . . . . . 7 (𝜑𝑉 ∈ V)
4 lkrsc.r . . . . . . 7 (𝜑𝑅𝐾)
5 lkrsc.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
6 lkrsc.g . . . . . . . . 9 (𝜑𝐺𝐹)
7 lkrsc.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
8 lkrsc.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
9 lkrsc.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 36697 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
115, 6, 10syl2anc 587 . . . . . . . 8 (𝜑𝐺:𝑉𝐾)
1211ffnd 6506 . . . . . . 7 (𝜑𝐺 Fn 𝑉)
13 eqidd 2739 . . . . . . 7 ((𝜑𝑣𝑉) → (𝐺𝑣) = (𝐺𝑣))
143, 4, 12, 13ofc2 7452 . . . . . 6 ((𝜑𝑣𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺𝑣) · 𝑅))
1514eqeq1d 2740 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺𝑣) · 𝑅) = 0 ))
16 lkrsc.o . . . . . 6 0 = (0g𝐷)
17 lkrsc.t . . . . . 6 · = (.r𝐷)
187lvecdrng 19997 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
195, 18syl 17 . . . . . . 7 (𝜑𝐷 ∈ DivRing)
2019adantr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝐷 ∈ DivRing)
215adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
226adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝐺𝐹)
23 simpr 488 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
247, 8, 1, 9lflcl 36698 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
2521, 22, 23, 24syl3anc 1372 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
264adantr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅𝐾)
27 lkrsc.e . . . . . . 7 (𝜑𝑅0 )
2827adantr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅0 )
298, 16, 17, 20, 25, 26, 28drngmuleq0 19645 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺𝑣) · 𝑅) = 0 ↔ (𝐺𝑣) = 0 ))
3015, 29bitrd 282 . . . 4 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺𝑣) = 0 ))
3130pm5.32da 582 . . 3 (𝜑 → ((𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
32 lveclmod 19998 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
335, 32syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
341, 7, 8, 17, 9, 33, 6, 4lflvscl 36711 . . . 4 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
35 lkrsc.l . . . . 5 𝐿 = (LKer‘𝑊)
361, 7, 16, 9, 35ellkr 36723 . . . 4 ((𝑊 ∈ LVec ∧ (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
375, 34, 36syl2anc 587 . . 3 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
381, 7, 16, 9, 35ellkr 36723 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
395, 6, 38syl2anc 587 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
4031, 37, 393bitr4d 314 . 2 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿𝐺)))
4140eqrdv 2736 1 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wne 2934  Vcvv 3398  {csn 4517   × cxp 5524  wf 6336  cfv 6340  (class class class)co 7171  f cof 7424  Basecbs 16587  .rcmulr 16670  Scalarcsca 16672  0gc0g 16817  DivRingcdr 19622  LModclmod 19754  LVecclvec 19994  LFnlclfn 36691  LKerclk 36719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-of 7426  df-om 7601  df-tpos 7922  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-map 8440  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-2 11780  df-3 11781  df-ndx 16590  df-slot 16591  df-base 16593  df-sets 16594  df-ress 16595  df-plusg 16682  df-mulr 16683  df-0g 16819  df-mgm 17969  df-sgrp 18018  df-mnd 18029  df-grp 18223  df-minusg 18224  df-mgp 19360  df-ur 19372  df-ring 19419  df-oppr 19496  df-dvdsr 19514  df-unit 19515  df-invr 19545  df-drng 19624  df-lmod 19756  df-lvec 19995  df-lfl 36692  df-lkr 36720
This theorem is referenced by:  lkrscss  36732  ldualkrsc  36801
  Copyright terms: Public domain W3C validator