Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrsc Structured version   Visualization version   GIF version

Theorem lkrsc 37038
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
lkrsc.o 0 = (0g𝐷)
lkrsc.e (𝜑𝑅0 )
Assertion
Ref Expression
lkrsc (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))

Proof of Theorem lkrsc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lkrsc.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
21fvexi 6770 . . . . . . . 8 𝑉 ∈ V
32a1i 11 . . . . . . 7 (𝜑𝑉 ∈ V)
4 lkrsc.r . . . . . . 7 (𝜑𝑅𝐾)
5 lkrsc.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
6 lkrsc.g . . . . . . . . 9 (𝜑𝐺𝐹)
7 lkrsc.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
8 lkrsc.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
9 lkrsc.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 37004 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
115, 6, 10syl2anc 583 . . . . . . . 8 (𝜑𝐺:𝑉𝐾)
1211ffnd 6585 . . . . . . 7 (𝜑𝐺 Fn 𝑉)
13 eqidd 2739 . . . . . . 7 ((𝜑𝑣𝑉) → (𝐺𝑣) = (𝐺𝑣))
143, 4, 12, 13ofc2 7538 . . . . . 6 ((𝜑𝑣𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺𝑣) · 𝑅))
1514eqeq1d 2740 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺𝑣) · 𝑅) = 0 ))
16 lkrsc.o . . . . . 6 0 = (0g𝐷)
17 lkrsc.t . . . . . 6 · = (.r𝐷)
187lvecdrng 20282 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
195, 18syl 17 . . . . . . 7 (𝜑𝐷 ∈ DivRing)
2019adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝐷 ∈ DivRing)
215adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
226adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝐺𝐹)
23 simpr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
247, 8, 1, 9lflcl 37005 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
2521, 22, 23, 24syl3anc 1369 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
264adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅𝐾)
27 lkrsc.e . . . . . . 7 (𝜑𝑅0 )
2827adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅0 )
298, 16, 17, 20, 25, 26, 28drngmuleq0 19929 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺𝑣) · 𝑅) = 0 ↔ (𝐺𝑣) = 0 ))
3015, 29bitrd 278 . . . 4 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺𝑣) = 0 ))
3130pm5.32da 578 . . 3 (𝜑 → ((𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
32 lveclmod 20283 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
335, 32syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
341, 7, 8, 17, 9, 33, 6, 4lflvscl 37018 . . . 4 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
35 lkrsc.l . . . . 5 𝐿 = (LKer‘𝑊)
361, 7, 16, 9, 35ellkr 37030 . . . 4 ((𝑊 ∈ LVec ∧ (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
375, 34, 36syl2anc 583 . . 3 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
381, 7, 16, 9, 35ellkr 37030 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
395, 6, 38syl2anc 583 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
4031, 37, 393bitr4d 310 . 2 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿𝐺)))
4140eqrdv 2736 1 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  {csn 4558   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891  0gc0g 17067  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lvec 20280  df-lfl 36999  df-lkr 37027
This theorem is referenced by:  lkrscss  37039  ldualkrsc  37108
  Copyright terms: Public domain W3C validator