Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrsc Structured version   Visualization version   GIF version

Theorem lkrsc 36393
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
lkrsc.o 0 = (0g𝐷)
lkrsc.e (𝜑𝑅0 )
Assertion
Ref Expression
lkrsc (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))

Proof of Theorem lkrsc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lkrsc.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
21fvexi 6659 . . . . . . . 8 𝑉 ∈ V
32a1i 11 . . . . . . 7 (𝜑𝑉 ∈ V)
4 lkrsc.r . . . . . . 7 (𝜑𝑅𝐾)
5 lkrsc.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
6 lkrsc.g . . . . . . . . 9 (𝜑𝐺𝐹)
7 lkrsc.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
8 lkrsc.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
9 lkrsc.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 36359 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
115, 6, 10syl2anc 587 . . . . . . . 8 (𝜑𝐺:𝑉𝐾)
1211ffnd 6488 . . . . . . 7 (𝜑𝐺 Fn 𝑉)
13 eqidd 2799 . . . . . . 7 ((𝜑𝑣𝑉) → (𝐺𝑣) = (𝐺𝑣))
143, 4, 12, 13ofc2 7413 . . . . . 6 ((𝜑𝑣𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺𝑣) · 𝑅))
1514eqeq1d 2800 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺𝑣) · 𝑅) = 0 ))
16 lkrsc.o . . . . . 6 0 = (0g𝐷)
17 lkrsc.t . . . . . 6 · = (.r𝐷)
187lvecdrng 19870 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
195, 18syl 17 . . . . . . 7 (𝜑𝐷 ∈ DivRing)
2019adantr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝐷 ∈ DivRing)
215adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
226adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝐺𝐹)
23 simpr 488 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
247, 8, 1, 9lflcl 36360 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
2521, 22, 23, 24syl3anc 1368 . . . . . 6 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
264adantr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅𝐾)
27 lkrsc.e . . . . . . 7 (𝜑𝑅0 )
2827adantr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝑅0 )
298, 16, 17, 20, 25, 26, 28drngmuleq0 19518 . . . . 5 ((𝜑𝑣𝑉) → (((𝐺𝑣) · 𝑅) = 0 ↔ (𝐺𝑣) = 0 ))
3015, 29bitrd 282 . . . 4 ((𝜑𝑣𝑉) → (((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺𝑣) = 0 ))
3130pm5.32da 582 . . 3 (𝜑 → ((𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
32 lveclmod 19871 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
335, 32syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
341, 7, 8, 17, 9, 33, 6, 4lflvscl 36373 . . . 4 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
35 lkrsc.l . . . . 5 𝐿 = (LKer‘𝑊)
361, 7, 16, 9, 35ellkr 36385 . . . 4 ((𝑊 ∈ LVec ∧ (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
375, 34, 36syl2anc 587 . . 3 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ (𝑣𝑉 ∧ ((𝐺f · (𝑉 × {𝑅}))‘𝑣) = 0 )))
381, 7, 16, 9, 35ellkr 36385 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
395, 6, 38syl2anc 587 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = 0 )))
4031, 37, 393bitr4d 314 . 2 (𝜑 → (𝑣 ∈ (𝐿‘(𝐺f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿𝐺)))
4140eqrdv 2796 1 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  {csn 4525   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560  0gc0g 16705  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867  LFnlclfn 36353  LKerclk 36381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lvec 19868  df-lfl 36354  df-lkr 36382
This theorem is referenced by:  lkrscss  36394  ldualkrsc  36463
  Copyright terms: Public domain W3C validator