![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrsc | Structured version Visualization version GIF version |
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
Ref | Expression |
---|---|
lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
lkrsc.t | ⊢ · = (.r‘𝐷) |
lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
lkrsc.o | ⊢ 0 = (0g‘𝐷) |
lkrsc.e | ⊢ (𝜑 → 𝑅 ≠ 0 ) |
Ref | Expression |
---|---|
lkrsc | ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrsc.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6921 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lkrsc.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
5 | lkrsc.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lkrsc.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
7 | lkrsc.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
8 | lkrsc.k | . . . . . . . . . 10 ⊢ 𝐾 = (Base‘𝐷) | |
9 | lkrsc.f | . . . . . . . . . 10 ⊢ 𝐹 = (LFnl‘𝑊) | |
10 | 7, 8, 1, 9 | lflf 39045 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
11 | 5, 6, 10 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
12 | 11 | ffnd 6738 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
13 | eqidd 2736 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) = (𝐺‘𝑣)) | |
14 | 3, 4, 12, 13 | ofc2 7726 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺‘𝑣) · 𝑅)) |
15 | 14 | eqeq1d 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺‘𝑣) · 𝑅) = 0 )) |
16 | lkrsc.o | . . . . . 6 ⊢ 0 = (0g‘𝐷) | |
17 | lkrsc.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
18 | 7 | lvecdrng 21122 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ DivRing) |
19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ DivRing) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐷 ∈ DivRing) |
21 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
22 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
23 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
24 | 7, 8, 1, 9 | lflcl 39046 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
25 | 21, 22, 23, 24 | syl3anc 1370 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
26 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ∈ 𝐾) |
27 | lkrsc.e | . . . . . . 7 ⊢ (𝜑 → 𝑅 ≠ 0 ) | |
28 | 27 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ≠ 0 ) |
29 | 8, 16, 17, 20, 25, 26, 28 | drngmuleq0 20780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺‘𝑣) · 𝑅) = 0 ↔ (𝐺‘𝑣) = 0 )) |
30 | 15, 29 | bitrd 279 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺‘𝑣) = 0 )) |
31 | 30 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
32 | lveclmod 21123 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
33 | 5, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
34 | 1, 7, 8, 17, 9, 33, 6, 4 | lflvscl 39059 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) |
35 | lkrsc.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
36 | 1, 7, 16, 9, 35 | ellkr 39071 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
37 | 5, 34, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
38 | 1, 7, 16, 9, 35 | ellkr 39071 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
39 | 5, 6, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
40 | 31, 37, 39 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿‘𝐺))) |
41 | 40 | eqrdv 2733 | 1 ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 {csn 4631 × cxp 5687 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 0gc0g 17486 DivRingcdr 20746 LModclmod 20875 LVecclvec 21119 LFnlclfn 39039 LKerclk 39067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lvec 21120 df-lfl 39040 df-lkr 39068 |
This theorem is referenced by: lkrscss 39080 ldualkrsc 39149 |
Copyright terms: Public domain | W3C validator |