| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrsc | Structured version Visualization version GIF version | ||
| Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
| lkrsc.t | ⊢ · = (.r‘𝐷) |
| lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
| lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| lkrsc.o | ⊢ 0 = (0g‘𝐷) |
| lkrsc.e | ⊢ (𝜑 → 𝑅 ≠ 0 ) |
| Ref | Expression |
|---|---|
| lkrsc | ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrsc.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6836 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lkrsc.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 5 | lkrsc.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lkrsc.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | lkrsc.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 8 | lkrsc.k | . . . . . . . . . 10 ⊢ 𝐾 = (Base‘𝐷) | |
| 9 | lkrsc.f | . . . . . . . . . 10 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 10 | 7, 8, 1, 9 | lflf 39046 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 11 | 5, 6, 10 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 12 | 11 | ffnd 6653 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
| 13 | eqidd 2730 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) = (𝐺‘𝑣)) | |
| 14 | 3, 4, 12, 13 | ofc2 7642 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = ((𝐺‘𝑣) · 𝑅)) |
| 15 | 14 | eqeq1d 2731 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺‘𝑣) · 𝑅) = 0 )) |
| 16 | lkrsc.o | . . . . . 6 ⊢ 0 = (0g‘𝐷) | |
| 17 | lkrsc.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
| 18 | 7 | lvecdrng 21009 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ DivRing) |
| 19 | 5, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ DivRing) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐷 ∈ DivRing) |
| 21 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
| 22 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
| 24 | 7, 8, 1, 9 | lflcl 39047 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
| 25 | 21, 22, 23, 24 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
| 26 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ∈ 𝐾) |
| 27 | lkrsc.e | . . . . . . 7 ⊢ (𝜑 → 𝑅 ≠ 0 ) | |
| 28 | 27 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ≠ 0 ) |
| 29 | 8, 16, 17, 20, 25, 26, 28 | drngmuleq0 20648 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺‘𝑣) · 𝑅) = 0 ↔ (𝐺‘𝑣) = 0 )) |
| 30 | 15, 29 | bitrd 279 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺‘𝑣) = 0 )) |
| 31 | 30 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
| 32 | lveclmod 21010 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 33 | 5, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 34 | 1, 7, 8, 17, 9, 33, 6, 4 | lflvscl 39060 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) |
| 35 | lkrsc.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
| 36 | 1, 7, 16, 9, 35 | ellkr 39072 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
| 37 | 5, 34, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
| 38 | 1, 7, 16, 9, 35 | ellkr 39072 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
| 39 | 5, 6, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
| 40 | 31, 37, 39 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿‘𝐺))) |
| 41 | 40 | eqrdv 2727 | 1 ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 {csn 4577 × cxp 5617 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 0gc0g 17343 DivRingcdr 20614 LModclmod 20763 LVecclvec 21006 LFnlclfn 39040 LKerclk 39068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20765 df-lvec 21007 df-lfl 39041 df-lkr 39069 |
| This theorem is referenced by: lkrscss 39081 ldualkrsc 39150 |
| Copyright terms: Public domain | W3C validator |