Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsval Structured version   Visualization version   GIF version

Theorem ldualvsval 37194
Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualvs.x (𝜑𝑋𝐾)
ldualvs.g (𝜑𝐺𝐹)
ldualvs.a (𝜑𝐴𝑉)
Assertion
Ref Expression
ldualvsval (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) × 𝑋))

Proof of Theorem ldualvsval
StepHypRef Expression
1 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
3 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
4 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
5 ldualfvs.t . . . 4 × = (.r𝑅)
6 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
7 ldualfvs.s . . . 4 = ( ·𝑠𝐷)
8 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
9 ldualvs.x . . . 4 (𝜑𝑋𝐾)
10 ldualvs.g . . . 4 (𝜑𝐺𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 37193 . . 3 (𝜑 → (𝑋 𝐺) = (𝐺f × (𝑉 × {𝑋})))
1211fveq1d 6806 . 2 (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺f × (𝑉 × {𝑋}))‘𝐴))
13 ldualvs.a . . 3 (𝜑𝐴𝑉)
142fvexi 6818 . . . . 5 𝑉 ∈ V
1514a1i 11 . . . 4 (𝜑𝑉 ∈ V)
163, 4, 2, 1lflf 37119 . . . . . 6 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
178, 10, 16syl2anc 585 . . . . 5 (𝜑𝐺:𝑉𝐾)
1817ffnd 6631 . . . 4 (𝜑𝐺 Fn 𝑉)
19 eqidd 2737 . . . 4 ((𝜑𝐴𝑉) → (𝐺𝐴) = (𝐺𝐴))
2015, 9, 18, 19ofc2 7592 . . 3 ((𝜑𝐴𝑉) → ((𝐺f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺𝐴) × 𝑋))
2113, 20mpdan 685 . 2 (𝜑 → ((𝐺f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺𝐴) × 𝑋))
2212, 21eqtrd 2776 1 (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  {csn 4565   × cxp 5598  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563  Basecbs 16957  .rcmulr 17008  Scalarcsca 17010   ·𝑠 cvsca 17011  LFnlclfn 37113  LDualcld 37179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-struct 16893  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-sca 17023  df-vsca 17024  df-lfl 37114  df-ldual 37180
This theorem is referenced by:  ldualvsubval  37213  lcfrlem1  39598  lcdvsval  39660
  Copyright terms: Public domain W3C validator