Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsval | Structured version Visualization version GIF version |
Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvs.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ldualvsval | ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
5 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
6 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualfvs.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
8 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
9 | ldualvs.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | ldualvs.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ldualvs 37453 | . . 3 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
12 | 11 | fveq1d 6832 | . 2 ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺 ∘f × (𝑉 × {𝑋}))‘𝐴)) |
13 | ldualvs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | 2 | fvexi 6844 | . . . . 5 ⊢ 𝑉 ∈ V |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
16 | 3, 4, 2, 1 | lflf 37379 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
17 | 8, 10, 16 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
18 | 17 | ffnd 6657 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
19 | eqidd 2738 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐺‘𝐴) = (𝐺‘𝐴)) | |
20 | 15, 9, 18, 19 | ofc2 7627 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ((𝐺 ∘f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
21 | 13, 20 | mpdan 685 | . 2 ⊢ (𝜑 → ((𝐺 ∘f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
22 | 12, 21 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 {csn 4578 × cxp 5623 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ∘f cof 7598 Basecbs 17010 .rcmulr 17061 Scalarcsca 17063 ·𝑠 cvsca 17064 LFnlclfn 37373 LDualcld 37439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-sca 17076 df-vsca 17077 df-lfl 37374 df-ldual 37440 |
This theorem is referenced by: ldualvsubval 37473 lcfrlem1 39859 lcdvsval 39921 |
Copyright terms: Public domain | W3C validator |