Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsval Structured version   Visualization version   GIF version

Theorem ldualvsval 37131
Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualvs.x (𝜑𝑋𝐾)
ldualvs.g (𝜑𝐺𝐹)
ldualvs.a (𝜑𝐴𝑉)
Assertion
Ref Expression
ldualvsval (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) × 𝑋))

Proof of Theorem ldualvsval
StepHypRef Expression
1 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
3 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
4 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
5 ldualfvs.t . . . 4 × = (.r𝑅)
6 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
7 ldualfvs.s . . . 4 = ( ·𝑠𝐷)
8 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
9 ldualvs.x . . . 4 (𝜑𝑋𝐾)
10 ldualvs.g . . . 4 (𝜑𝐺𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 37130 . . 3 (𝜑 → (𝑋 𝐺) = (𝐺f × (𝑉 × {𝑋})))
1211fveq1d 6770 . 2 (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺f × (𝑉 × {𝑋}))‘𝐴))
13 ldualvs.a . . 3 (𝜑𝐴𝑉)
142fvexi 6782 . . . . 5 𝑉 ∈ V
1514a1i 11 . . . 4 (𝜑𝑉 ∈ V)
163, 4, 2, 1lflf 37056 . . . . . 6 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
178, 10, 16syl2anc 583 . . . . 5 (𝜑𝐺:𝑉𝐾)
1817ffnd 6597 . . . 4 (𝜑𝐺 Fn 𝑉)
19 eqidd 2740 . . . 4 ((𝜑𝐴𝑉) → (𝐺𝐴) = (𝐺𝐴))
2015, 9, 18, 19ofc2 7551 . . 3 ((𝜑𝐴𝑉) → ((𝐺f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺𝐴) × 𝑋))
2113, 20mpdan 683 . 2 (𝜑 → ((𝐺f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺𝐴) × 𝑋))
2212, 21eqtrd 2779 1 (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566   × cxp 5586  wf 6426  cfv 6430  (class class class)co 7268  f cof 7522  Basecbs 16893  .rcmulr 16944  Scalarcsca 16946   ·𝑠 cvsca 16947  LFnlclfn 37050  LDualcld 37116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-sca 16959  df-vsca 16960  df-lfl 37051  df-ldual 37117
This theorem is referenced by:  ldualvsubval  37150  lcfrlem1  39535  lcdvsval  39597
  Copyright terms: Public domain W3C validator