Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsval | Structured version Visualization version GIF version |
Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvs.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
ldualvsval | ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
5 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
6 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualfvs.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
8 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
9 | ldualvs.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | ldualvs.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ldualvs 37193 | . . 3 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
12 | 11 | fveq1d 6806 | . 2 ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺 ∘f × (𝑉 × {𝑋}))‘𝐴)) |
13 | ldualvs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | 2 | fvexi 6818 | . . . . 5 ⊢ 𝑉 ∈ V |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
16 | 3, 4, 2, 1 | lflf 37119 | . . . . . 6 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
17 | 8, 10, 16 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
18 | 17 | ffnd 6631 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
19 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐺‘𝐴) = (𝐺‘𝐴)) | |
20 | 15, 9, 18, 19 | ofc2 7592 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → ((𝐺 ∘f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
21 | 13, 20 | mpdan 685 | . 2 ⊢ (𝜑 → ((𝐺 ∘f × (𝑉 × {𝑋}))‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
22 | 12, 21 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {csn 4565 × cxp 5598 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ∘f cof 7563 Basecbs 16957 .rcmulr 17008 Scalarcsca 17010 ·𝑠 cvsca 17011 LFnlclfn 37113 LDualcld 37179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-sca 17023 df-vsca 17024 df-lfl 37114 df-ldual 37180 |
This theorem is referenced by: ldualvsubval 37213 lcfrlem1 39598 lcdvsval 39660 |
Copyright terms: Public domain | W3C validator |