Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnlen0 Structured version   Visualization version   GIF version

Theorem opnlen0 39148
Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd 2945 and op0le 39146 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
opnlen0 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋 𝑌) → 𝑋0 )

Proof of Theorem opnlen0
StepHypRef Expression
1 op0le.b . . . . . 6 𝐵 = (Base‘𝐾)
2 op0le.l . . . . . 6 = (le‘𝐾)
3 op0le.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 39146 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → 0 𝑌)
543adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 0 𝑌)
6 breq1 5126 . . . 4 (𝑋 = 0 → (𝑋 𝑌0 𝑌))
75, 6syl5ibrcom 247 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0𝑋 𝑌))
87necon3bd 2945 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌𝑋0 ))
98imp 406 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋 𝑌) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  Basecbs 17229  lecple 17280  0.cp0 18437  OPcops 39132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-glb 18361  df-p0 18439  df-oposet 39136
This theorem is referenced by:  cdlemg12e  40608
  Copyright terms: Public domain W3C validator