Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnlen0 Structured version   Visualization version   GIF version

Theorem opnlen0 39169
Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd 2939 and op0le 39167 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
opnlen0 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋 𝑌) → 𝑋0 )

Proof of Theorem opnlen0
StepHypRef Expression
1 op0le.b . . . . . 6 𝐵 = (Base‘𝐾)
2 op0le.l . . . . . 6 = (le‘𝐾)
3 op0le.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 39167 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → 0 𝑌)
543adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 0 𝑌)
6 breq1 5098 . . . 4 (𝑋 = 0 → (𝑋 𝑌0 𝑌))
75, 6syl5ibrcom 247 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0𝑋 𝑌))
87necon3bd 2939 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌𝑋0 ))
98imp 406 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋 𝑌) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  0.cp0 18345  OPcops 39153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-glb 18269  df-p0 18347  df-oposet 39157
This theorem is referenced by:  cdlemg12e  40629
  Copyright terms: Public domain W3C validator