Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnlen0 Structured version   Visualization version   GIF version

Theorem opnlen0 39184
Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd 2954 and op0le 39182 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
opnlen0 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋 𝑌) → 𝑋0 )

Proof of Theorem opnlen0
StepHypRef Expression
1 op0le.b . . . . . 6 𝐵 = (Base‘𝐾)
2 op0le.l . . . . . 6 = (le‘𝐾)
3 op0le.z . . . . . 6 0 = (0.‘𝐾)
41, 2, 3op0le 39182 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → 0 𝑌)
543adant2 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 0 𝑌)
6 breq1 5154 . . . 4 (𝑋 = 0 → (𝑋 𝑌0 𝑌))
75, 6syl5ibrcom 247 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0𝑋 𝑌))
87necon3bd 2954 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌𝑋0 ))
98imp 406 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑋 𝑌) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940   class class class wbr 5151  cfv 6569  Basecbs 17254  lecple 17314  0.cp0 18490  OPcops 39168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-glb 18414  df-p0 18492  df-oposet 39172
This theorem is referenced by:  cdlemg12e  40644
  Copyright terms: Public domain W3C validator