![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnlen0 | Structured version Visualization version GIF version |
Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd 2954 and op0le 39182 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.) |
Ref | Expression |
---|---|
op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
op0le.l | ⊢ ≤ = (le‘𝐾) |
op0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
opnlen0 | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0le.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | op0le.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | op0le.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | op0le 39182 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → 0 ≤ 𝑌) |
5 | 4 | 3adant2 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 0 ≤ 𝑌) |
6 | breq1 5154 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ≤ 𝑌 ↔ 0 ≤ 𝑌)) | |
7 | 5, 6 | syl5ibrcom 247 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 0 → 𝑋 ≤ 𝑌)) |
8 | 7 | necon3bd 2954 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 → 𝑋 ≠ 0 )) |
9 | 8 | imp 406 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 lecple 17314 0.cp0 18490 OPcops 39168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-glb 18414 df-p0 18492 df-oposet 39172 |
This theorem is referenced by: cdlemg12e 40644 |
Copyright terms: Public domain | W3C validator |