| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnlen0 | Structured version Visualization version GIF version | ||
| Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd 2939 and op0le 39179 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.) |
| Ref | Expression |
|---|---|
| op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
| op0le.l | ⊢ ≤ = (le‘𝐾) |
| op0le.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| opnlen0 | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0le.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | op0le.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | op0le.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | op0le 39179 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → 0 ≤ 𝑌) |
| 5 | 4 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 0 ≤ 𝑌) |
| 6 | breq1 5110 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ≤ 𝑌 ↔ 0 ≤ 𝑌)) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 0 → 𝑋 ≤ 𝑌)) |
| 8 | 7 | necon3bd 2939 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 → 𝑋 ≠ 0 )) |
| 9 | 8 | imp 406 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 0.cp0 18382 OPcops 39165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-glb 18306 df-p0 18384 df-oposet 39169 |
| This theorem is referenced by: cdlemg12e 40641 |
| Copyright terms: Public domain | W3C validator |