Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnlen0 | Structured version Visualization version GIF version |
Description: An element not less than another is nonzero. TODO: Look for uses of necon3bd 2954 and op0le 36937 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.) |
Ref | Expression |
---|---|
op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
op0le.l | ⊢ ≤ = (le‘𝐾) |
op0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
opnlen0 | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0le.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | op0le.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | op0le.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | op0le 36937 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → 0 ≤ 𝑌) |
5 | 4 | 3adant2 1133 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 0 ≤ 𝑌) |
6 | breq1 5056 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ≤ 𝑌 ↔ 0 ≤ 𝑌)) | |
7 | 5, 6 | syl5ibrcom 250 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 0 → 𝑋 ≤ 𝑌)) |
8 | 7 | necon3bd 2954 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 → 𝑋 ≠ 0 )) |
9 | 8 | imp 410 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 ‘cfv 6380 Basecbs 16760 lecple 16809 0.cp0 17929 OPcops 36923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-glb 17853 df-p0 17931 df-oposet 36927 |
This theorem is referenced by: cdlemg12e 38398 |
Copyright terms: Public domain | W3C validator |