| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppf2 | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| oppf2 | ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 2 | oppfval2 49177 | . . . 4 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | |
| 3 | fvex 6835 | . . . . 5 ⊢ (1st ‘𝐹) ∈ V | |
| 4 | fvex 6835 | . . . . . 6 ⊢ (2nd ‘𝐹) ∈ V | |
| 5 | 4 | tposex 8190 | . . . . 5 ⊢ tpos (2nd ‘𝐹) ∈ V |
| 6 | 3, 5 | op2ndd 7932 | . . . 4 ⊢ (( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉 → (2nd ‘( oppFunc ‘𝐹)) = tpos (2nd ‘𝐹)) |
| 7 | 1, 2, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → (2nd ‘( oppFunc ‘𝐹)) = tpos (2nd ‘𝐹)) |
| 8 | 7 | oveqd 7363 | . 2 ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑀tpos (2nd ‘𝐹)𝑁)) |
| 9 | ovtpos 8171 | . 2 ⊢ (𝑀tpos (2nd ‘𝐹)𝑁) = (𝑁(2nd ‘𝐹)𝑀) | |
| 10 | 8, 9 | eqtrdi 2782 | 1 ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4579 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 tpos ctpos 8155 Func cfunc 17761 oppFunc coppf 49162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-tpos 8156 df-map 8752 df-ixp 8822 df-func 17765 df-oppf 49163 |
| This theorem is referenced by: oppfdiag 49456 |
| Copyright terms: Public domain | W3C validator |