| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppf2 | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| oppf2 | ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppf1.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 2 | oppfval2 49122 | . . . 4 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | |
| 3 | fvex 6835 | . . . . 5 ⊢ (1st ‘𝐹) ∈ V | |
| 4 | fvex 6835 | . . . . . 6 ⊢ (2nd ‘𝐹) ∈ V | |
| 5 | 4 | tposex 8193 | . . . . 5 ⊢ tpos (2nd ‘𝐹) ∈ V |
| 6 | 3, 5 | op2ndd 7935 | . . . 4 ⊢ (( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉 → (2nd ‘( oppFunc ‘𝐹)) = tpos (2nd ‘𝐹)) |
| 7 | 1, 2, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → (2nd ‘( oppFunc ‘𝐹)) = tpos (2nd ‘𝐹)) |
| 8 | 7 | oveqd 7366 | . 2 ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑀tpos (2nd ‘𝐹)𝑁)) |
| 9 | ovtpos 8174 | . 2 ⊢ (𝑀tpos (2nd ‘𝐹)𝑁) = (𝑁(2nd ‘𝐹)𝑀) | |
| 10 | 8, 9 | eqtrdi 2780 | 1 ⊢ (𝜑 → (𝑀(2nd ‘( oppFunc ‘𝐹))𝑁) = (𝑁(2nd ‘𝐹)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 tpos ctpos 8158 Func cfunc 17761 oppFunc coppf 49107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-tpos 8159 df-map 8755 df-ixp 8825 df-func 17765 df-oppf 49108 |
| This theorem is referenced by: oppfdiag 49401 |
| Copyright terms: Public domain | W3C validator |