Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfval2 Structured version   Visualization version   GIF version

Theorem oppfval2 49148
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfval2 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)

Proof of Theorem oppfval2
StepHypRef Expression
1 relfunc 17761 . . . . 5 Rel (𝐶 Func 𝐷)
2 1st2nd 7966 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
31, 2mpan 690 . . . 4 (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
43fveq2d 6821 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
5 df-ov 7344 . . 3 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
64, 5eqtr4di 2783 . 2 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ((1st𝐹) oppFunc (2nd𝐹)))
7 1st2ndbr 7969 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
81, 7mpan 690 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9 oppfval 49147 . . 3 ((1st𝐹)(𝐶 Func 𝐷)(2nd𝐹) → ((1st𝐹) oppFunc (2nd𝐹)) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
108, 9syl 17 . 2 (𝐹 ∈ (𝐶 Func 𝐷) → ((1st𝐹) oppFunc (2nd𝐹)) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
116, 10eqtrd 2765 1 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cop 4580   class class class wbr 5089  Rel wrel 5619  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150   Func cfunc 17753   oppFunc coppf 49133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-tpos 8151  df-map 8747  df-ixp 8817  df-func 17757  df-oppf 49134
This theorem is referenced by:  oppf1  49150  oppf2  49151  2oppffunc  49157  cofuoppf  49161  fulloppf  49174  fthoppf  49175  natoppf2  49241  opf11  49414  opf12  49415  ranval3  49642  islmd  49676
  Copyright terms: Public domain W3C validator