Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfval2 Structured version   Visualization version   GIF version

Theorem oppfval2 49130
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfval2 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)

Proof of Theorem oppfval2
StepHypRef Expression
1 relfunc 17831 . . . . 5 Rel (𝐶 Func 𝐷)
2 1st2nd 8021 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
31, 2mpan 690 . . . 4 (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
43fveq2d 6865 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
5 df-ov 7393 . . 3 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
64, 5eqtr4di 2783 . 2 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ((1st𝐹) oppFunc (2nd𝐹)))
7 1st2ndbr 8024 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
81, 7mpan 690 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9 oppfval 49129 . . 3 ((1st𝐹)(𝐶 Func 𝐷)(2nd𝐹) → ((1st𝐹) oppFunc (2nd𝐹)) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
108, 9syl 17 . 2 (𝐹 ∈ (𝐶 Func 𝐷) → ((1st𝐹) oppFunc (2nd𝐹)) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
116, 10eqtrd 2765 1 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  Rel wrel 5646  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8207   Func cfunc 17823   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-tpos 8208  df-map 8804  df-ixp 8874  df-func 17827  df-oppf 49116
This theorem is referenced by:  oppf1  49132  oppf2  49133  2oppffunc  49139  cofuoppf  49143  fulloppf  49156  fthoppf  49157  natoppf2  49223  opf11  49396  opf12  49397  ranval3  49624  islmd  49658
  Copyright terms: Public domain W3C validator