| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfval2 | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfval2 | ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17775 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 1st2nd 7977 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 4 | 3 | fveq2d 6832 | . . 3 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 5 | df-ov 7355 | . . 3 ⊢ ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 6 | 4, 5 | eqtr4di 2784 | . 2 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ((1st ‘𝐹) oppFunc (2nd ‘𝐹))) |
| 7 | 1st2ndbr 7980 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 8 | 1, 7 | mpan 690 | . . 3 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 9 | oppfval 49242 | . . 3 ⊢ ((1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹) → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| 11 | 6, 10 | eqtrd 2766 | 1 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4581 class class class wbr 5093 Rel wrel 5624 ‘cfv 6487 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 tpos ctpos 8161 Func cfunc 17767 oppFunc coppf 49228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-tpos 8162 df-map 8758 df-ixp 8828 df-func 17771 df-oppf 49229 |
| This theorem is referenced by: oppf1 49245 oppf2 49246 2oppffunc 49252 cofuoppf 49256 fulloppf 49269 fthoppf 49270 natoppf2 49336 opf11 49509 opf12 49510 ranval3 49737 islmd 49771 |
| Copyright terms: Public domain | W3C validator |