| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfval2 | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfval2 | ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17761 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 1st2nd 7966 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 4 | 3 | fveq2d 6821 | . . 3 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 5 | df-ov 7344 | . . 3 ⊢ ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 6 | 4, 5 | eqtr4di 2783 | . 2 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ((1st ‘𝐹) oppFunc (2nd ‘𝐹))) |
| 7 | 1st2ndbr 7969 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 8 | 1, 7 | mpan 690 | . . 3 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 9 | oppfval 49147 | . . 3 ⊢ ((1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹) → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| 11 | 6, 10 | eqtrd 2765 | 1 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 tpos ctpos 8150 Func cfunc 17753 oppFunc coppf 49133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-tpos 8151 df-map 8747 df-ixp 8817 df-func 17757 df-oppf 49134 |
| This theorem is referenced by: oppf1 49150 oppf2 49151 2oppffunc 49157 cofuoppf 49161 fulloppf 49174 fthoppf 49175 natoppf2 49241 opf11 49414 opf12 49415 ranval3 49642 islmd 49676 |
| Copyright terms: Public domain | W3C validator |