Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfval2 Structured version   Visualization version   GIF version

Theorem oppfval2 49243
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
oppfval2 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)

Proof of Theorem oppfval2
StepHypRef Expression
1 relfunc 17775 . . . . 5 Rel (𝐶 Func 𝐷)
2 1st2nd 7977 . . . . 5 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
31, 2mpan 690 . . . 4 (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
43fveq2d 6832 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩))
5 df-ov 7355 . . 3 ((1st𝐹) oppFunc (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), (2nd𝐹)⟩)
64, 5eqtr4di 2784 . 2 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ((1st𝐹) oppFunc (2nd𝐹)))
7 1st2ndbr 7980 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
81, 7mpan 690 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
9 oppfval 49242 . . 3 ((1st𝐹)(𝐶 Func 𝐷)(2nd𝐹) → ((1st𝐹) oppFunc (2nd𝐹)) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
108, 9syl 17 . 2 (𝐹 ∈ (𝐶 Func 𝐷) → ((1st𝐹) oppFunc (2nd𝐹)) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
116, 10eqtrd 2766 1 (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4581   class class class wbr 5093  Rel wrel 5624  cfv 6487  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  tpos ctpos 8161   Func cfunc 17767   oppFunc coppf 49228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-tpos 8162  df-map 8758  df-ixp 8828  df-func 17771  df-oppf 49229
This theorem is referenced by:  oppf1  49245  oppf2  49246  2oppffunc  49252  cofuoppf  49256  fulloppf  49269  fthoppf  49270  natoppf2  49336  opf11  49509  opf12  49510  ranval3  49737  islmd  49771
  Copyright terms: Public domain W3C validator