| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfval2 | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfval2 | ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17831 | . . . . 5 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 1st2nd 8021 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 4 | 3 | fveq2d 6865 | . . 3 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 5 | df-ov 7393 | . . 3 ⊢ ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = ( oppFunc ‘〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 6 | 4, 5 | eqtr4di 2783 | . 2 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = ((1st ‘𝐹) oppFunc (2nd ‘𝐹))) |
| 7 | 1st2ndbr 8024 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 8 | 1, 7 | mpan 690 | . . 3 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 9 | oppfval 49129 | . . 3 ⊢ ((1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹) → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ((1st ‘𝐹) oppFunc (2nd ‘𝐹)) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| 11 | 6, 10 | eqtrd 2765 | 1 ⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 tpos ctpos 8207 Func cfunc 17823 oppFunc coppf 49115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-tpos 8208 df-map 8804 df-ixp 8874 df-func 17827 df-oppf 49116 |
| This theorem is referenced by: oppf1 49132 oppf2 49133 2oppffunc 49139 cofuoppf 49143 fulloppf 49156 fthoppf 49157 natoppf2 49223 opf11 49396 opf12 49397 ranval3 49624 islmd 49658 |
| Copyright terms: Public domain | W3C validator |