MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordttop Structured version   Visualization version   GIF version

Theorem ordttop 22349
Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordttop (𝑅𝑉 → (ordTop‘𝑅) ∈ Top)

Proof of Theorem ordttop
StepHypRef Expression
1 eqid 2738 . . 3 dom 𝑅 = dom 𝑅
21ordttopon 22342 . 2 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
3 topontop 22060 . 2 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → (ordTop‘𝑅) ∈ Top)
42, 3syl 17 1 (𝑅𝑉 → (ordTop‘𝑅) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  dom cdm 5591  cfv 6435  ordTopcordt 17208  Topctop 22040  TopOnctopon 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-om 7713  df-1o 8295  df-er 8496  df-en 8732  df-fin 8735  df-fi 9168  df-topgen 17152  df-ordt 17210  df-top 22041  df-topon 22058  df-bases 22094
This theorem is referenced by:  ordtrest  22351  ordtrest2lem  22352  ordtrest2  22353  ordtt1  22528  ordtrestNEW  31868  ordtrest2NEWlem  31869  ordtrest2NEW  31870
  Copyright terms: Public domain W3C validator