![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marrepval | Structured version Visualization version GIF version |
Description: Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.) |
Ref | Expression |
---|---|
marrepfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marrepfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marrepfval.q | ⊢ 𝑄 = (𝑁 matRRep 𝑅) |
marrepfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
marrepval | ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marrepfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marrepfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marrepfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRRep 𝑅) | |
4 | marrepfval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | marrepval0 22588 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
6 | 5 | adantr 480 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
7 | simprl 770 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐾 ∈ 𝑁) | |
8 | simplrr 777 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ 𝑘 = 𝐾) → 𝐿 ∈ 𝑁) | |
9 | 1, 2 | matrcl 22437 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 494 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | 10, 10 | jca 511 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
12 | 11 | ad3antrrr 729 | . . . 4 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
13 | mpoexga 8118 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) ∈ V) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) ∈ V) |
15 | eqeq2 2752 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) | |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) |
17 | eqeq2 2752 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑗 = 𝑙 ↔ 𝑗 = 𝐿)) | |
18 | 17 | ifbid 4571 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → if(𝑗 = 𝑙, 𝑆, 0 ) = if(𝑗 = 𝐿, 𝑆, 0 )) |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑗 = 𝑙, 𝑆, 0 ) = if(𝑗 = 𝐿, 𝑆, 0 )) |
20 | 16, 19 | ifbieq1d 4572 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))) |
21 | 20 | mpoeq3dv 7529 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
22 | 21 | adantl 481 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
23 | 7, 8, 14, 22 | ovmpodv2 7608 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝑀𝑄𝑆) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))) |
24 | 6, 23 | mpd 15 | 1 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Fincfn 9003 Basecbs 17258 0gc0g 17499 Mat cmat 22432 matRRep cmarrep 22583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-mat 22433 df-marrep 22585 |
This theorem is referenced by: marrepeval 22590 marrepcl 22591 1marepvmarrepid 22602 smadiadetglem1 22698 smadiadetglem2 22699 madjusmdetlem1 33773 |
Copyright terms: Public domain | W3C validator |