MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepval Structured version   Visualization version   GIF version

Theorem marrepval 21911
Description: Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepval (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗   𝑆,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem marrepval
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marrepfval.b . . . 4 𝐵 = (Base‘𝐴)
3 marrepfval.q . . . 4 𝑄 = (𝑁 matRRep 𝑅)
4 marrepfval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4marrepval0 21910 . . 3 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
65adantr 481 . 2 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))))
7 simprl 769 . . 3 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → 𝐾𝑁)
8 simplrr 776 . . 3 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ 𝑘 = 𝐾) → 𝐿𝑁)
91, 2matrcl 21759 . . . . . . 7 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 495 . . . . . 6 (𝑀𝐵𝑁 ∈ Fin)
1110, 10jca 512 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
1211ad3antrrr 728 . . . 4 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
13 mpoexga 8010 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) ∈ V)
1412, 13syl 17 . . 3 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) ∈ V)
15 eqeq2 2748 . . . . . . 7 (𝑘 = 𝐾 → (𝑖 = 𝑘𝑖 = 𝐾))
1615adantr 481 . . . . . 6 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 = 𝑘𝑖 = 𝐾))
17 eqeq2 2748 . . . . . . . 8 (𝑙 = 𝐿 → (𝑗 = 𝑙𝑗 = 𝐿))
1817ifbid 4509 . . . . . . 7 (𝑙 = 𝐿 → if(𝑗 = 𝑙, 𝑆, 0 ) = if(𝑗 = 𝐿, 𝑆, 0 ))
1918adantl 482 . . . . . 6 ((𝑘 = 𝐾𝑙 = 𝐿) → if(𝑗 = 𝑙, 𝑆, 0 ) = if(𝑗 = 𝐿, 𝑆, 0 ))
2016, 19ifbieq1d 4510 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))
2120mpoeq3dv 7436 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))
2221adantl 482 . . 3 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))
237, 8, 14, 22ovmpodv2 7513 . 2 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → ((𝑀𝑄𝑆) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑆, 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))))
246, 23mpd 15 1 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  Basecbs 17083  0gc0g 17321   Mat cmat 21754   matRRep cmarrep 21905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-1cn 11109  ax-addcl 11111
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-nn 12154  df-slot 17054  df-ndx 17066  df-base 17084  df-mat 21755  df-marrep 21907
This theorem is referenced by:  marrepeval  21912  marrepcl  21913  1marepvmarrepid  21924  smadiadetglem1  22020  smadiadetglem2  22021  madjusmdetlem1  32408
  Copyright terms: Public domain W3C validator