Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > marepveval | Structured version Visualization version GIF version |
Description: An entry of a matrix with a replaced column. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
Ref | Expression |
---|---|
marepveval | ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marepvfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
4 | marepvfval.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
5 | 1, 2, 3, 4 | marepvval 21469 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
6 | 5 | adantr 484 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
7 | simprl 771 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
8 | simplrr 778 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑖 = 𝐼) → 𝐽 ∈ 𝑁) | |
9 | fvexd 6737 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶‘𝑖) ∈ V) | |
10 | ovexd 7253 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
11 | 9, 10 | ifcld 4490 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ V) |
12 | 11 | adantr 484 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ V) |
13 | eqeq1 2741 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (𝑗 = 𝐾 ↔ 𝐽 = 𝐾)) | |
14 | 13 | adantl 485 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑗 = 𝐾 ↔ 𝐽 = 𝐾)) |
15 | fveq2 6722 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝐶‘𝑖) = (𝐶‘𝐼)) | |
16 | 15 | adantr 484 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝐶‘𝑖) = (𝐶‘𝐼)) |
17 | oveq12 7227 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) | |
18 | 14, 16, 17 | ifbieq12d 4472 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
19 | 18 | adantl 485 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
20 | 7, 8, 12, 19 | ovmpodv2 7372 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽)))) |
21 | 6, 20 | mpd 15 | 1 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 Vcvv 3413 ifcif 4444 ‘cfv 6385 (class class class)co 7218 ∈ cmpo 7220 ↑m cmap 8513 Basecbs 16765 Mat cmat 21309 matRepV cmatrepV 21459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-1cn 10792 ax-addcl 10794 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-nn 11836 df-slot 16740 df-ndx 16750 df-base 16766 df-mat 21310 df-marepv 21461 |
This theorem is referenced by: ma1repveval 21473 1marepvsma1 21485 |
Copyright terms: Public domain | W3C validator |