| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > marepveval | Structured version Visualization version GIF version | ||
| Description: An entry of a matrix with a replaced column. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
| marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| Ref | Expression |
|---|---|
| marepveval | ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marepvfval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | marepvfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | marepvfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
| 4 | marepvfval.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 5 | 1, 2, 3, 4 | marepvval 22461 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
| 6 | 5 | adantr 480 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
| 7 | simprl 770 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
| 8 | simplrr 777 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑖 = 𝐼) → 𝐽 ∈ 𝑁) | |
| 9 | fvexd 6876 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶‘𝑖) ∈ V) | |
| 10 | ovexd 7425 | . . . . 5 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
| 11 | 9, 10 | ifcld 4538 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ V) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ V) |
| 13 | eqeq1 2734 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (𝑗 = 𝐾 ↔ 𝐽 = 𝐾)) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑗 = 𝐾 ↔ 𝐽 = 𝐾)) |
| 15 | fveq2 6861 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝐶‘𝑖) = (𝐶‘𝐼)) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝐶‘𝑖) = (𝐶‘𝐼)) |
| 17 | oveq12 7399 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) | |
| 18 | 14, 16, 17 | ifbieq12d 4520 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
| 20 | 7, 8, 12, 19 | ovmpodv2 7550 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽)))) |
| 21 | 6, 20 | mpd 15 | 1 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼𝑀𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4491 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 Basecbs 17186 Mat cmat 22301 matRepV cmatrepV 22451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-mat 22302 df-marepv 22453 |
| This theorem is referenced by: ma1repveval 22465 1marepvsma1 22477 |
| Copyright terms: Public domain | W3C validator |