MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepveval Structured version   Visualization version   GIF version

Theorem marepveval 21917
Description: An entry of a matrix with a replaced column. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepveval (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼𝑀𝐽)))

Proof of Theorem marepveval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . 4 𝐵 = (Base‘𝐴)
3 marepvfval.q . . . 4 𝑄 = (𝑁 matRepV 𝑅)
4 marepvfval.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
51, 2, 3, 4marepvval 21916 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
65adantr 481 . 2 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
7 simprl 769 . . 3 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
8 simplrr 776 . . 3 ((((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑖 = 𝐼) → 𝐽𝑁)
9 fvexd 6857 . . . . 5 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐶𝑖) ∈ V)
10 ovexd 7392 . . . . 5 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝑖𝑀𝑗) ∈ V)
119, 10ifcld 4532 . . . 4 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)) ∈ V)
1211adantr 481 . . 3 ((((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)) ∈ V)
13 eqeq1 2740 . . . . . 6 (𝑗 = 𝐽 → (𝑗 = 𝐾𝐽 = 𝐾))
1413adantl 482 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑗 = 𝐾𝐽 = 𝐾))
15 fveq2 6842 . . . . . 6 (𝑖 = 𝐼 → (𝐶𝑖) = (𝐶𝐼))
1615adantr 481 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝐶𝑖) = (𝐶𝐼))
17 oveq12 7366 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
1814, 16, 17ifbieq12d 4514 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼𝑀𝐽)))
1918adantl 482 . . 3 ((((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼𝑀𝐽)))
207, 8, 12, 19ovmpodv2 7513 . 2 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼𝑀𝐽))))
216, 20mpd 15 1 (((𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑀𝑄𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼𝑀𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Basecbs 17083   Mat cmat 21754   matRepV cmatrepV 21906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-1cn 11109  ax-addcl 11111
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-nn 12154  df-slot 17054  df-ndx 17066  df-base 17084  df-mat 21755  df-marepv 21908
This theorem is referenced by:  ma1repveval  21920  1marepvsma1  21932
  Copyright terms: Public domain W3C validator