MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1eval Structured version   Visualization version   GIF version

Theorem minmar1eval 22676
Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a 𝐴 = (𝑁 Mat 𝑅)
minmar1fval.b 𝐵 = (Base‘𝐴)
minmar1fval.q 𝑄 = (𝑁 minMatR1 𝑅)
minmar1fval.o 1 = (1r𝑅)
minmar1fval.z 0 = (0g𝑅)
Assertion
Ref Expression
minmar1eval ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))

Proof of Theorem minmar1eval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 minmar1fval.b . . . . 5 𝐵 = (Base‘𝐴)
3 minmar1fval.q . . . . 5 𝑄 = (𝑁 minMatR1 𝑅)
4 minmar1fval.o . . . . 5 1 = (1r𝑅)
5 minmar1fval.z . . . . 5 0 = (0g𝑅)
61, 2, 3, 4, 5minmar1val 22675 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
763expb 1120 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
873adant3 1132 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
9 simp3l 1201 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
10 simpl3r 1229 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑖 = 𝐼) → 𝐽𝑁)
114fvexi 6934 . . . . . 6 1 ∈ V
125fvexi 6934 . . . . . 6 0 ∈ V
1311, 12ifex 4598 . . . . 5 if(𝑗 = 𝐿, 1 , 0 ) ∈ V
14 ovex 7481 . . . . 5 (𝑖𝑀𝑗) ∈ V
1513, 14ifex 4598 . . . 4 if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V
1615a1i 11 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V)
17 eqeq1 2744 . . . . . 6 (𝑖 = 𝐼 → (𝑖 = 𝐾𝐼 = 𝐾))
1817adantr 480 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝐾𝐼 = 𝐾))
19 eqeq1 2744 . . . . . . 7 (𝑗 = 𝐽 → (𝑗 = 𝐿𝐽 = 𝐿))
2019adantl 481 . . . . . 6 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑗 = 𝐿𝐽 = 𝐿))
2120ifbid 4571 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑗 = 𝐿, 1 , 0 ) = if(𝐽 = 𝐿, 1 , 0 ))
22 oveq12 7457 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
2318, 21, 22ifbieq12d 4576 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
2423adantl 481 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
259, 10, 16, 24ovmpodv2 7608 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))))
268, 25mpd 15 1 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  0gc0g 17499  1rcur 20208   Mat cmat 22432   minMatR1 cminmar1 22660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-slot 17229  df-ndx 17241  df-base 17259  df-mat 22433  df-minmar1 22662
This theorem is referenced by:  madjusmdetlem1  33773
  Copyright terms: Public domain W3C validator