| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minmar1eval | Structured version Visualization version GIF version | ||
| Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) |
| minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) |
| minmar1fval.o | ⊢ 1 = (1r‘𝑅) |
| minmar1fval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| minmar1eval | ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minmar1fval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | minmar1fval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | minmar1fval.q | . . . . 5 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
| 4 | minmar1fval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 5 | minmar1fval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | minmar1val 22551 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
| 7 | 6 | 3expb 1120 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
| 9 | simp3l 1202 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
| 10 | simpl3r 1230 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑖 = 𝐼) → 𝐽 ∈ 𝑁) | |
| 11 | 4 | fvexi 6840 | . . . . . 6 ⊢ 1 ∈ V |
| 12 | 5 | fvexi 6840 | . . . . . 6 ⊢ 0 ∈ V |
| 13 | 11, 12 | ifex 4529 | . . . . 5 ⊢ if(𝑗 = 𝐿, 1 , 0 ) ∈ V |
| 14 | ovex 7386 | . . . . 5 ⊢ (𝑖𝑀𝑗) ∈ V | |
| 15 | 13, 14 | ifex 4529 | . . . 4 ⊢ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V |
| 16 | 15 | a1i 11 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V) |
| 17 | eqeq1 2733 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = 𝐾 ↔ 𝐼 = 𝐾)) | |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝐾 ↔ 𝐼 = 𝐾)) |
| 19 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (𝑗 = 𝐿 ↔ 𝐽 = 𝐿)) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑗 = 𝐿 ↔ 𝐽 = 𝐿)) |
| 21 | 20 | ifbid 4502 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑗 = 𝐿, 1 , 0 ) = if(𝐽 = 𝐿, 1 , 0 )) |
| 22 | oveq12 7362 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) | |
| 23 | 18, 21, 22 | ifbieq12d 4507 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
| 25 | 9, 10, 16, 24 | ovmpodv2 7511 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))) |
| 26 | 8, 25 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ifcif 4478 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 0gc0g 17361 1rcur 20084 Mat cmat 22310 minMatR1 cminmar1 22536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 df-mat 22311 df-minmar1 22538 |
| This theorem is referenced by: madjusmdetlem1 33793 |
| Copyright terms: Public domain | W3C validator |