MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1eval Structured version   Visualization version   GIF version

Theorem minmar1eval 22671
Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a 𝐴 = (𝑁 Mat 𝑅)
minmar1fval.b 𝐵 = (Base‘𝐴)
minmar1fval.q 𝑄 = (𝑁 minMatR1 𝑅)
minmar1fval.o 1 = (1r𝑅)
minmar1fval.z 0 = (0g𝑅)
Assertion
Ref Expression
minmar1eval ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))

Proof of Theorem minmar1eval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 minmar1fval.b . . . . 5 𝐵 = (Base‘𝐴)
3 minmar1fval.q . . . . 5 𝑄 = (𝑁 minMatR1 𝑅)
4 minmar1fval.o . . . . 5 1 = (1r𝑅)
5 minmar1fval.z . . . . 5 0 = (0g𝑅)
61, 2, 3, 4, 5minmar1val 22670 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
763expb 1119 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
873adant3 1131 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
9 simp3l 1200 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
10 simpl3r 1228 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑖 = 𝐼) → 𝐽𝑁)
114fvexi 6921 . . . . . 6 1 ∈ V
125fvexi 6921 . . . . . 6 0 ∈ V
1311, 12ifex 4581 . . . . 5 if(𝑗 = 𝐿, 1 , 0 ) ∈ V
14 ovex 7464 . . . . 5 (𝑖𝑀𝑗) ∈ V
1513, 14ifex 4581 . . . 4 if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V
1615a1i 11 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V)
17 eqeq1 2739 . . . . . 6 (𝑖 = 𝐼 → (𝑖 = 𝐾𝐼 = 𝐾))
1817adantr 480 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝐾𝐼 = 𝐾))
19 eqeq1 2739 . . . . . . 7 (𝑗 = 𝐽 → (𝑗 = 𝐿𝐽 = 𝐿))
2019adantl 481 . . . . . 6 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑗 = 𝐿𝐽 = 𝐿))
2120ifbid 4554 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑗 = 𝐿, 1 , 0 ) = if(𝐽 = 𝐿, 1 , 0 ))
22 oveq12 7440 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
2318, 21, 22ifbieq12d 4559 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
2423adantl 481 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
259, 10, 16, 24ovmpodv2 7591 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))))
268, 25mpd 15 1 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  ifcif 4531  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  0gc0g 17486  1rcur 20199   Mat cmat 22427   minMatR1 cminmar1 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265  df-slot 17216  df-ndx 17228  df-base 17246  df-mat 22428  df-minmar1 22657
This theorem is referenced by:  madjusmdetlem1  33788
  Copyright terms: Public domain W3C validator