![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minmar1eval | Structured version Visualization version GIF version |
Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) |
minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) |
minmar1fval.o | ⊢ 1 = (1r‘𝑅) |
minmar1fval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
minmar1eval | ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmar1fval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | minmar1fval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | minmar1fval.q | . . . . 5 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
4 | minmar1fval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
5 | minmar1fval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | minmar1val 22537 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
7 | 6 | 3expb 1118 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
8 | 7 | 3adant3 1130 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
9 | simp3l 1199 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
10 | simpl3r 1227 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑖 = 𝐼) → 𝐽 ∈ 𝑁) | |
11 | 4 | fvexi 6905 | . . . . . 6 ⊢ 1 ∈ V |
12 | 5 | fvexi 6905 | . . . . . 6 ⊢ 0 ∈ V |
13 | 11, 12 | ifex 4574 | . . . . 5 ⊢ if(𝑗 = 𝐿, 1 , 0 ) ∈ V |
14 | ovex 7447 | . . . . 5 ⊢ (𝑖𝑀𝑗) ∈ V | |
15 | 13, 14 | ifex 4574 | . . . 4 ⊢ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V |
16 | 15 | a1i 11 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V) |
17 | eqeq1 2731 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = 𝐾 ↔ 𝐼 = 𝐾)) | |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝐾 ↔ 𝐼 = 𝐾)) |
19 | eqeq1 2731 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (𝑗 = 𝐿 ↔ 𝐽 = 𝐿)) | |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑗 = 𝐿 ↔ 𝐽 = 𝐿)) |
21 | 20 | ifbid 4547 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑗 = 𝐿, 1 , 0 ) = if(𝐽 = 𝐿, 1 , 0 )) |
22 | oveq12 7423 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) | |
23 | 18, 21, 22 | ifbieq12d 4552 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
24 | 23 | adantl 481 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
25 | 9, 10, 16, 24 | ovmpodv2 7573 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))) |
26 | 8, 25 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ifcif 4524 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 Basecbs 17171 0gc0g 17412 1rcur 20112 Mat cmat 22294 minMatR1 cminmar1 22522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-1cn 11188 ax-addcl 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12235 df-slot 17142 df-ndx 17154 df-base 17172 df-mat 22295 df-minmar1 22524 |
This theorem is referenced by: madjusmdetlem1 33364 |
Copyright terms: Public domain | W3C validator |