![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submaeval | Structured version Visualization version GIF version |
Description: An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018.) |
Ref | Expression |
---|---|
submafval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
submafval.q | ⊢ 𝑄 = (𝑁 subMat 𝑅) |
submafval.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submaeval | ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = (𝐼𝑀𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submafval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | submafval.q | . . . . 5 ⊢ 𝑄 = (𝑁 subMat 𝑅) | |
3 | submafval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | submaval 21953 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
5 | 4 | 3expb 1121 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
6 | 5 | 3adant3 1133 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
7 | simp3l 1202 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → 𝐼 ∈ (𝑁 ∖ {𝐾})) | |
8 | simpl3r 1230 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ 𝑖 = 𝐼) → 𝐽 ∈ (𝑁 ∖ {𝐿})) | |
9 | ovexd 7396 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → (𝑖𝑀𝑗) ∈ V) | |
10 | oveq12 7370 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) | |
11 | 10 | adantl 483 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) |
12 | 7, 8, 9, 11 | ovmpodv2 7517 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → ((𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = (𝐼𝑀𝐽))) |
13 | 6, 12 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄‘𝑀)𝐿)𝐽) = (𝐼𝑀𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∖ cdif 3911 {csn 4590 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 Basecbs 17091 Mat cmat 21777 subMat csubma 21948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-1cn 11117 ax-addcl 11119 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-en 8890 df-fin 8893 df-nn 12162 df-slot 17062 df-ndx 17074 df-base 17092 df-mat 21778 df-subma 21949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |