MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submaeval Structured version   Visualization version   GIF version

Theorem submaeval 22066
Description: An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submaeval ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = (𝐼𝑀𝐽))

Proof of Theorem submaeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 submafval.q . . . . 5 𝑄 = (𝑁 subMat 𝑅)
3 submafval.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3submaval 22065 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
543expb 1121 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
653adant3 1133 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
7 simp3l 1202 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → 𝐼 ∈ (𝑁 ∖ {𝐾}))
8 simpl3r 1230 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ 𝑖 = 𝐼) → 𝐽 ∈ (𝑁 ∖ {𝐿}))
9 ovexd 7439 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑖𝑀𝑗) ∈ V)
10 oveq12 7413 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
1110adantl 483 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
127, 8, 9, 11ovmpodv2 7561 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → ((𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = (𝐼𝑀𝐽)))
136, 12mpd 15 1 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = (𝐼𝑀𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  cdif 3944  {csn 4627  cfv 6540  (class class class)co 7404  cmpo 7406  Basecbs 17140   Mat cmat 21889   subMat csubma 22060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-1cn 11164  ax-addcl 11166
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-en 8936  df-fin 8939  df-nn 12209  df-slot 17111  df-ndx 17123  df-base 17141  df-mat 21890  df-subma 22061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator