Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  submaval Structured version   Visualization version   GIF version

Theorem submaval 21184
 Description: Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submaval ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)

Proof of Theorem submaval
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 submafval.q . . . 4 𝑄 = (𝑁 subMat 𝑅)
3 submafval.b . . . 4 𝐵 = (Base‘𝐴)
41, 2, 3submaval0 21183 . . 3 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
543ad2ant1 1129 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
6 simp2 1133 . . 3 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝐾𝑁)
7 simpl3 1189 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑘 = 𝐾) → 𝐿𝑁)
81, 3matrcl 21015 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 497 . . . . . . . 8 (𝑀𝐵𝑁 ∈ Fin)
10 diffi 8744 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝑘}) ∈ Fin)
119, 10syl 17 . . . . . . 7 (𝑀𝐵 → (𝑁 ∖ {𝑘}) ∈ Fin)
12 diffi 8744 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝑙}) ∈ Fin)
139, 12syl 17 . . . . . . 7 (𝑀𝐵 → (𝑁 ∖ {𝑙}) ∈ Fin)
1411, 13jca 514 . . . . . 6 (𝑀𝐵 → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
15143ad2ant1 1129 . . . . 5 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
1615adantr 483 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
17 mpoexga 7769 . . . 4 (((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V)
1816, 17syl 17 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V)
19 sneq 4570 . . . . . . 7 (𝑘 = 𝐾 → {𝑘} = {𝐾})
2019difeq2d 4098 . . . . . 6 (𝑘 = 𝐾 → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾}))
2120adantr 483 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾}))
22 sneq 4570 . . . . . . 7 (𝑙 = 𝐿 → {𝑙} = {𝐿})
2322difeq2d 4098 . . . . . 6 (𝑙 = 𝐿 → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿}))
2423adantl 484 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿}))
25 eqidd 2822 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗))
2621, 24, 25mpoeq123dv 7223 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
2726adantl 484 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
286, 7, 18, 27ovmpodv2 7302 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))))
295, 28mpd 15 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  Vcvv 3494   ∖ cdif 3932  {csn 4560  ‘cfv 6349  (class class class)co 7150   ∈ cmpo 7152  Fincfn 8503  Basecbs 16477   Mat cmat 21010   subMat csubma 21179 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-fin 8507  df-slot 16481  df-base 16483  df-mat 21011  df-subma 21180 This theorem is referenced by:  submaeval  21185  1marepvsma1  21186  smadiadet  21273  submat1n  31065  submatres  31066  madjusmdetlem1  31087
 Copyright terms: Public domain W3C validator