MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submaval Structured version   Visualization version   GIF version

Theorem submaval 22012
Description: Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submaval ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)

Proof of Theorem submaval
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 submafval.q . . . 4 𝑄 = (𝑁 subMat 𝑅)
3 submafval.b . . . 4 𝐵 = (Base‘𝐴)
41, 2, 3submaval0 22011 . . 3 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
543ad2ant1 1133 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
6 simp2 1137 . . 3 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝐾𝑁)
7 simpl3 1193 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑘 = 𝐾) → 𝐿𝑁)
81, 3matrcl 21841 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 495 . . . . . . . 8 (𝑀𝐵𝑁 ∈ Fin)
10 diffi 9162 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝑘}) ∈ Fin)
119, 10syl 17 . . . . . . 7 (𝑀𝐵 → (𝑁 ∖ {𝑘}) ∈ Fin)
12 diffi 9162 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 ∖ {𝑙}) ∈ Fin)
139, 12syl 17 . . . . . . 7 (𝑀𝐵 → (𝑁 ∖ {𝑙}) ∈ Fin)
1411, 13jca 512 . . . . . 6 (𝑀𝐵 → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
15143ad2ant1 1133 . . . . 5 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
1615adantr 481 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin))
17 mpoexga 8046 . . . 4 (((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V)
1816, 17syl 17 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V)
19 sneq 4632 . . . . . . 7 (𝑘 = 𝐾 → {𝑘} = {𝐾})
2019difeq2d 4118 . . . . . 6 (𝑘 = 𝐾 → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾}))
2120adantr 481 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾}))
22 sneq 4632 . . . . . . 7 (𝑙 = 𝐿 → {𝑙} = {𝐿})
2322difeq2d 4118 . . . . . 6 (𝑙 = 𝐿 → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿}))
2423adantl 482 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿}))
25 eqidd 2732 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗))
2621, 24, 25mpoeq123dv 7468 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
2726adantl 482 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
286, 7, 18, 27ovmpodv2 7549 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))))
295, 28mpd 15 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3473  cdif 3941  {csn 4622  cfv 6532  (class class class)co 7393  cmpo 7395  Fincfn 8922  Basecbs 17126   Mat cmat 21836   subMat csubma 22007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-1cn 11150  ax-addcl 11152
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-en 8923  df-fin 8926  df-nn 12195  df-slot 17097  df-ndx 17109  df-base 17127  df-mat 21837  df-subma 22008
This theorem is referenced by:  submaeval  22013  1marepvsma1  22014  smadiadet  22101  submat1n  32614  submatres  32615  madjusmdetlem1  32636
  Copyright terms: Public domain W3C validator