Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > submaval | Structured version Visualization version GIF version |
Description: Third substitution for a submatrix. (Contributed by AV, 28-Dec-2018.) |
Ref | Expression |
---|---|
submafval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
submafval.q | ⊢ 𝑄 = (𝑁 subMat 𝑅) |
submafval.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submaval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submafval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | submafval.q | . . . 4 ⊢ 𝑄 = (𝑁 subMat 𝑅) | |
3 | submafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | submaval0 21637 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)))) |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)))) |
6 | simp2 1135 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐾 ∈ 𝑁) | |
7 | simpl3 1191 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑘 = 𝐾) → 𝐿 ∈ 𝑁) | |
8 | 1, 3 | matrcl 21469 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | simpld 494 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
10 | diffi 8979 | . . . . . . . 8 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑘}) ∈ Fin) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∖ {𝑘}) ∈ Fin) |
12 | diffi 8979 | . . . . . . . 8 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑙}) ∈ Fin) | |
13 | 9, 12 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∖ {𝑙}) ∈ Fin) |
14 | 11, 13 | jca 511 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin)) |
15 | 14 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin)) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → ((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin)) |
17 | mpoexga 7891 | . . . 4 ⊢ (((𝑁 ∖ {𝑘}) ∈ Fin ∧ (𝑁 ∖ {𝑙}) ∈ Fin) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) ∈ V) |
19 | sneq 4568 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → {𝑘} = {𝐾}) | |
20 | 19 | difeq2d 4053 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾})) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑁 ∖ {𝑘}) = (𝑁 ∖ {𝐾})) |
22 | sneq 4568 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → {𝑙} = {𝐿}) | |
23 | 22 | difeq2d 4053 | . . . . . 6 ⊢ (𝑙 = 𝐿 → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿})) |
24 | 23 | adantl 481 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑁 ∖ {𝑙}) = (𝑁 ∖ {𝐿})) |
25 | eqidd 2739 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
26 | 21, 24, 25 | mpoeq123dv 7328 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
27 | 26 | adantl 481 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
28 | 6, 7, 18, 27 | ovmpodv2 7409 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))) |
29 | 5, 28 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 Basecbs 16840 Mat cmat 21464 subMat csubma 21633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-en 8692 df-fin 8695 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-mat 21465 df-subma 21634 |
This theorem is referenced by: submaeval 21639 1marepvsma1 21640 smadiadet 21727 submat1n 31657 submatres 31658 madjusmdetlem1 31679 |
Copyright terms: Public domain | W3C validator |