|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > minmar1val | Structured version Visualization version GIF version | ||
| Description: Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) | 
| minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | 
| minmar1fval.o | ⊢ 1 = (1r‘𝑅) | 
| minmar1fval.z | ⊢ 0 = (0g‘𝑅) | 
| Ref | Expression | 
|---|---|
| minmar1val | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | minmar1fval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | minmar1fval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | minmar1fval.q | . . . 4 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
| 4 | minmar1fval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 5 | minmar1fval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | minmar1val0 22653 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) | 
| 7 | 6 | 3ad2ant1 1134 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) | 
| 8 | simp2 1138 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐾 ∈ 𝑁) | |
| 9 | simpl3 1194 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑘 = 𝐾) → 𝐿 ∈ 𝑁) | |
| 10 | 1, 2 | matrcl 22416 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | 
| 11 | 10 | simpld 494 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) | 
| 12 | 11, 11 | jca 511 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 13 | 12 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 14 | 13 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 15 | mpoexga 8102 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V) | 
| 17 | eqeq2 2749 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) | |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) | 
| 19 | eqeq2 2749 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑗 = 𝑙 ↔ 𝑗 = 𝐿)) | |
| 20 | 19 | ifbid 4549 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 )) | 
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 )) | 
| 22 | 18, 21 | ifbieq1d 4550 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) | 
| 23 | 22 | mpoeq3dv 7512 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) | 
| 24 | 23 | adantl 481 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) | 
| 25 | 8, 9, 16, 24 | ovmpodv2 7591 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))) | 
| 26 | 7, 25 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ifcif 4525 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8985 Basecbs 17247 0gc0g 17484 1rcur 20178 Mat cmat 22411 minMatR1 cminmar1 22639 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-slot 17219 df-ndx 17231 df-base 17248 df-mat 22412 df-minmar1 22641 | 
| This theorem is referenced by: minmar1eval 22655 maducoevalmin1 22658 smadiadet 22676 smadiadetglem2 22678 | 
| Copyright terms: Public domain | W3C validator |