![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minmar1val | Structured version Visualization version GIF version |
Description: Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) |
minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) |
minmar1fval.o | ⊢ 1 = (1r‘𝑅) |
minmar1fval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
minmar1val | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmar1fval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | minmar1fval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | minmar1fval.q | . . . 4 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
4 | minmar1fval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | minmar1fval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | minmar1val0 22140 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
8 | simp2 1137 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐾 ∈ 𝑁) | |
9 | simpl3 1193 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑘 = 𝐾) → 𝐿 ∈ 𝑁) | |
10 | 1, 2 | matrcl 21903 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
11 | 10 | simpld 495 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
12 | 11, 11 | jca 512 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
13 | 12 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
14 | 13 | adantr 481 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
15 | mpoexga 8060 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V) |
17 | eqeq2 2744 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) | |
18 | 17 | adantr 481 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) |
19 | eqeq2 2744 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑗 = 𝑙 ↔ 𝑗 = 𝐿)) | |
20 | 19 | ifbid 4550 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 )) |
21 | 20 | adantl 482 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 )) |
22 | 18, 21 | ifbieq1d 4551 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) |
23 | 22 | mpoeq3dv 7484 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
24 | 23 | adantl 482 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
25 | 8, 9, 16, 24 | ovmpodv2 7562 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))) |
26 | 7, 25 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ifcif 4527 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 Fincfn 8935 Basecbs 17140 0gc0g 17381 1rcur 19998 Mat cmat 21898 minMatR1 cminmar1 22126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-slot 17111 df-ndx 17123 df-base 17141 df-mat 21899 df-minmar1 22128 |
This theorem is referenced by: minmar1eval 22142 maducoevalmin1 22145 smadiadet 22163 smadiadetglem2 22165 |
Copyright terms: Public domain | W3C validator |