MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1val Structured version   Visualization version   GIF version

Theorem minmar1val 21251
Description: Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a 𝐴 = (𝑁 Mat 𝑅)
minmar1fval.b 𝐵 = (Base‘𝐴)
minmar1fval.q 𝑄 = (𝑁 minMatR1 𝑅)
minmar1fval.o 1 = (1r𝑅)
minmar1fval.z 0 = (0g𝑅)
Assertion
Ref Expression
minmar1val ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   1 (𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem minmar1val
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 minmar1fval.b . . . 4 𝐵 = (Base‘𝐴)
3 minmar1fval.q . . . 4 𝑄 = (𝑁 minMatR1 𝑅)
4 minmar1fval.o . . . 4 1 = (1r𝑅)
5 minmar1fval.z . . . 4 0 = (0g𝑅)
61, 2, 3, 4, 5minmar1val0 21250 . . 3 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
763ad2ant1 1129 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
8 simp2 1133 . . 3 ((𝑀𝐵𝐾𝑁𝐿𝑁) → 𝐾𝑁)
9 simpl3 1189 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ 𝑘 = 𝐾) → 𝐿𝑁)
101, 2matrcl 21015 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1110simpld 497 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
1211, 11jca 514 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
13123ad2ant1 1129 . . . . 5 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
1413adantr 483 . . . 4 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
15 mpoexga 7769 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V)
1614, 15syl 17 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V)
17 eqeq2 2833 . . . . . . 7 (𝑘 = 𝐾 → (𝑖 = 𝑘𝑖 = 𝐾))
1817adantr 483 . . . . . 6 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖 = 𝑘𝑖 = 𝐾))
19 eqeq2 2833 . . . . . . . 8 (𝑙 = 𝐿 → (𝑗 = 𝑙𝑗 = 𝐿))
2019ifbid 4488 . . . . . . 7 (𝑙 = 𝐿 → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 ))
2120adantl 484 . . . . . 6 ((𝑘 = 𝐾𝑙 = 𝐿) → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 ))
2218, 21ifbieq1d 4489 . . . . 5 ((𝑘 = 𝐾𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))
2322mpoeq3dv 7227 . . . 4 ((𝑘 = 𝐾𝑙 = 𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
2423adantl 484 . . 3 (((𝑀𝐵𝐾𝑁𝐿𝑁) ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
258, 9, 16, 24ovmpodv2 7302 . 2 ((𝑀𝐵𝐾𝑁𝐿𝑁) → ((𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))))
267, 25mpd 15 1 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  ifcif 4466  cfv 6349  (class class class)co 7150  cmpo 7152  Fincfn 8503  Basecbs 16477  0gc0g 16707  1rcur 19245   Mat cmat 21010   minMatR1 cminmar1 21236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-slot 16481  df-base 16483  df-mat 21011  df-minmar1 21238
This theorem is referenced by:  minmar1eval  21252  maducoevalmin1  21255  smadiadet  21273  smadiadetglem2  21275
  Copyright terms: Public domain W3C validator