![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minmar1val | Structured version Visualization version GIF version |
Description: Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) |
minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) |
minmar1fval.o | ⊢ 1 = (1r‘𝑅) |
minmar1fval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
minmar1val | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmar1fval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | minmar1fval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | minmar1fval.q | . . . 4 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
4 | minmar1fval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | minmar1fval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | minmar1val0 21996 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
8 | simp2 1137 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐾 ∈ 𝑁) | |
9 | simpl3 1193 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ 𝑘 = 𝐾) → 𝐿 ∈ 𝑁) | |
10 | 1, 2 | matrcl 21759 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
11 | 10 | simpld 495 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
12 | 11, 11 | jca 512 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
13 | 12 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
14 | 13 | adantr 481 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
15 | mpoexga 8010 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) ∈ V) |
17 | eqeq2 2748 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) | |
18 | 17 | adantr 481 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 = 𝑘 ↔ 𝑖 = 𝐾)) |
19 | eqeq2 2748 | . . . . . . . 8 ⊢ (𝑙 = 𝐿 → (𝑗 = 𝑙 ↔ 𝑗 = 𝐿)) | |
20 | 19 | ifbid 4509 | . . . . . . 7 ⊢ (𝑙 = 𝐿 → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 )) |
21 | 20 | adantl 482 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑗 = 𝑙, 1 , 0 ) = if(𝑗 = 𝐿, 1 , 0 )) |
22 | 18, 21 | ifbieq1d 4510 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) |
23 | 22 | mpoeq3dv 7436 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑙 = 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
24 | 23 | adantl 482 | . . 3 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
25 | 8, 9, 16, 24 | ovmpodv2 7513 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))) |
26 | 7, 25 | mpd 15 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾(𝑄‘𝑀)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ifcif 4486 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 Fincfn 8883 Basecbs 17083 0gc0g 17321 1rcur 19913 Mat cmat 21754 minMatR1 cminmar1 21982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-1cn 11109 ax-addcl 11111 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-nn 12154 df-slot 17054 df-ndx 17066 df-base 17084 df-mat 21755 df-minmar1 21984 |
This theorem is referenced by: minmar1eval 21998 maducoevalmin1 22001 smadiadet 22019 smadiadetglem2 22021 |
Copyright terms: Public domain | W3C validator |