MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpot Structured version   Visualization version   GIF version

Theorem ovmpot 7550
Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.)
Assertion
Ref Expression
ovmpot ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovmpot
StepHypRef Expression
1 oveq12 7396 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵))
2 eqid 2729 . 2 (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))
3 ovex 7420 . 2 (𝐴𝐹𝐵) ∈ V
41, 2, 3ovmpoa 7544 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  cncrng  21300  cnfld1  21305  cndrng  21310  cnflddiv  21312  cnsubrglem  21333  expcn  24763  negcncf  24815  dvcnp2  25821  dvmulbr  25841  dvcobr  25849  cmvth  25895  dvfsumle  25926  dvfsumlem2  25933  dvply2g  26192  taylply2  26275  taylthlem2  26282  mpodvdsmulf1o  27104  fsumdvdsmul  27105
  Copyright terms: Public domain W3C validator