| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpot | Structured version Visualization version GIF version | ||
| Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.) |
| Ref | Expression |
|---|---|
| ovmpot | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7378 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 2 | eqid 2729 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) | |
| 3 | ovex 7402 | . 2 ⊢ (𝐴𝐹𝐵) ∈ V | |
| 4 | 1, 2, 3 | ovmpoa 7524 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: cncrng 21276 cnfld1 21281 cndrng 21286 cnflddiv 21288 cnsubrglem 21309 expcn 24739 negcncf 24791 dvcnp2 25797 dvmulbr 25817 dvcobr 25825 cmvth 25871 dvfsumle 25902 dvfsumlem2 25909 dvply2g 26168 taylply2 26251 taylthlem2 26258 mpodvdsmulf1o 27080 fsumdvdsmul 27081 |
| Copyright terms: Public domain | W3C validator |