MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpot Structured version   Visualization version   GIF version

Theorem ovmpot 7611
Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.)
Assertion
Ref Expression
ovmpot ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovmpot
StepHypRef Expression
1 oveq12 7457 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵))
2 eqid 2740 . 2 (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))
3 ovex 7481 . 2 (𝐴𝐹𝐵) ∈ V
41, 2, 3ovmpoa 7605 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  cncrng  21424  cnfld1  21429  cndrng  21434  cnflddiv  21436  cnsubrglem  21457  expcn  24915  negcncf  24967  dvcnp2  25975  dvmulbr  25995  dvcobr  26003  cmvth  26049  dvfsumle  26080  dvfsumlem2  26087  dvply2g  26344  taylply2  26427  taylthlem2  26434  mpodvdsmulf1o  27255  fsumdvdsmul  27256
  Copyright terms: Public domain W3C validator