| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpot | Structured version Visualization version GIF version | ||
| Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.) |
| Ref | Expression |
|---|---|
| ovmpot | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7414 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 2 | eqid 2735 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) | |
| 3 | ovex 7438 | . 2 ⊢ (𝐴𝐹𝐵) ∈ V | |
| 4 | 1, 2, 3 | ovmpoa 7562 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: cncrng 21351 cnfld1 21356 cndrng 21361 cnflddiv 21363 cnsubrglem 21384 expcn 24814 negcncf 24866 dvcnp2 25873 dvmulbr 25893 dvcobr 25901 cmvth 25947 dvfsumle 25978 dvfsumlem2 25985 dvply2g 26244 taylply2 26327 taylthlem2 26334 mpodvdsmulf1o 27156 fsumdvdsmul 27157 |
| Copyright terms: Public domain | W3C validator |