| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpot | Structured version Visualization version GIF version | ||
| Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.) |
| Ref | Expression |
|---|---|
| ovmpot | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7350 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 2 | eqid 2731 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦)) | |
| 3 | ovex 7374 | . 2 ⊢ (𝐴𝐹𝐵) ∈ V | |
| 4 | 1, 2, 3 | ovmpoa 7496 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ∈ cmpo 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: cncrng 21320 cnfld1 21325 cndrng 21330 cnflddiv 21332 cnsubrglem 21348 expcn 24785 negcncf 24837 dvcnp2 25843 dvmulbr 25863 dvcobr 25871 cmvth 25917 dvfsumle 25948 dvfsumlem2 25955 dvply2g 26214 taylply2 26297 taylthlem2 26304 mpodvdsmulf1o 27126 fsumdvdsmul 27127 |
| Copyright terms: Public domain | W3C validator |