MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpot Structured version   Visualization version   GIF version

Theorem ovmpot 7530
Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.)
Assertion
Ref Expression
ovmpot ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovmpot
StepHypRef Expression
1 oveq12 7378 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵))
2 eqid 2729 . 2 (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))
3 ovex 7402 . 2 (𝐴𝐹𝐵) ∈ V
41, 2, 3ovmpoa 7524 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cmpo 7371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  cncrng  21276  cnfld1  21281  cndrng  21286  cnflddiv  21288  cnsubrglem  21309  expcn  24739  negcncf  24791  dvcnp2  25797  dvmulbr  25817  dvcobr  25825  cmvth  25871  dvfsumle  25902  dvfsumlem2  25909  dvply2g  26168  taylply2  26251  taylthlem2  26258  mpodvdsmulf1o  27080  fsumdvdsmul  27081
  Copyright terms: Public domain W3C validator