MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpot Structured version   Visualization version   GIF version

Theorem ovmpot 7594
Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.)
Assertion
Ref Expression
ovmpot ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovmpot
StepHypRef Expression
1 oveq12 7440 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵))
2 eqid 2737 . 2 (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))
3 ovex 7464 . 2 (𝐴𝐹𝐵) ∈ V
41, 2, 3ovmpoa 7588 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7431  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  cncrng  21401  cnfld1  21406  cndrng  21411  cnflddiv  21413  cnsubrglem  21434  expcn  24896  negcncf  24948  dvcnp2  25955  dvmulbr  25975  dvcobr  25983  cmvth  26029  dvfsumle  26060  dvfsumlem2  26067  dvply2g  26326  taylply2  26409  taylthlem2  26416  mpodvdsmulf1o  27237  fsumdvdsmul  27238
  Copyright terms: Public domain W3C validator