MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpot Structured version   Visualization version   GIF version

Theorem ovmpot 7574
Description: The value of an operation is equal to the value of the same operation expressed in maps-to notation. (Contributed by GG, 16-Mar-2025.) (Revised by GG, 13-Apr-2025.)
Assertion
Ref Expression
ovmpot ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovmpot
StepHypRef Expression
1 oveq12 7423 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦) = (𝐴𝐹𝐵))
2 eqid 2727 . 2 (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦)) = (𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))
3 ovex 7447 . 2 (𝐴𝐹𝐵) ∈ V
41, 2, 3ovmpoa 7568 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝑥𝐶, 𝑦𝐷 ↦ (𝑥𝐹𝑦))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  (class class class)co 7414  cmpo 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419
This theorem is referenced by:  cncrng  21296  cnfld1  21301  cndrng  21306  cnflddiv  21308  cnsubrglem  21329  expcn  24764  negcncf  24816  dvcnp2  25823  dvmulbr  25843  dvcobr  25851  cmvth  25897  dvfsumle  25928  dvfsumlem2  25935  dvply2g  26193  taylply2  26276  taylthlem2  26283  mpodvdsmulf1o  27100  fsumdvdsmul  27101
  Copyright terms: Public domain W3C validator