| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcn | Structured version Visualization version GIF version | ||
| Description: The power function on complex numbers, for fixed exponent 𝑁, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 11209. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| expcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| expcn | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 0 → (𝑥↑𝑛) = (𝑥↑0)) | |
| 2 | 1 | mpteq2dv 5215 | . . 3 ⊢ (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
| 3 | 2 | eleq1d 2819 | . 2 ⊢ (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽))) |
| 4 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) | |
| 5 | 4 | mpteq2dv 5215 | . . 3 ⊢ (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
| 6 | 5 | eleq1d 2819 | . 2 ⊢ (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽))) |
| 7 | oveq2 7413 | . . . 4 ⊢ (𝑛 = (𝑘 + 1) → (𝑥↑𝑛) = (𝑥↑(𝑘 + 1))) | |
| 8 | 7 | mpteq2dv 5215 | . . 3 ⊢ (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
| 9 | 8 | eleq1d 2819 | . 2 ⊢ (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
| 10 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥↑𝑛) = (𝑥↑𝑁)) | |
| 11 | 10 | mpteq2dv 5215 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
| 12 | 11 | eleq1d 2819 | . 2 ⊢ (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽))) |
| 13 | exp0 14083 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 14 | 13 | mpteq2ia 5216 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
| 15 | expcn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 16 | 15 | cnfldtopon 24721 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℂ)) |
| 18 | 1cnd 11230 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
| 19 | 17, 17, 18 | cnmptc 23600 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽)) |
| 20 | 19 | mptru 1547 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽) |
| 21 | 14, 20 | eqeltri 2830 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽) |
| 22 | oveq1 7412 | . . . . . 6 ⊢ (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1))) | |
| 23 | 22 | cbvmptv 5225 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) |
| 24 | id 22 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → 𝑛 ∈ ℂ) | |
| 25 | simpl 482 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0) | |
| 26 | expp1 14086 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘) · 𝑛)) | |
| 27 | expcl 14097 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑𝑘) ∈ ℂ) | |
| 28 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ) | |
| 29 | ovmpot 7568 | . . . . . . . . 9 ⊢ (((𝑛↑𝑘) ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) | |
| 30 | 27, 28, 29 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) |
| 31 | 26, 30 | eqtr4d 2773 | . . . . . . 7 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) |
| 32 | 24, 25, 31 | syl2anr 597 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) |
| 33 | 32 | mpteq2dva 5214 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) |
| 34 | 23, 33 | eqtrid 2782 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) |
| 35 | 16 | a1i 11 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘ℂ)) |
| 36 | oveq1 7412 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥↑𝑘) = (𝑛↑𝑘)) | |
| 37 | 36 | cbvmptv 5225 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) |
| 38 | simpr 484 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) | |
| 39 | 37, 38 | eqeltrrid 2839 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) ∈ (𝐽 Cn 𝐽)) |
| 40 | 35 | cnmptid 23599 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽)) |
| 41 | 15 | mpomulcn 24809 | . . . . . 6 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| 42 | 41 | a1i 11 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 43 | 35, 39, 40, 42 | cnmpt12f 23604 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) ∈ (𝐽 Cn 𝐽)) |
| 44 | 34, 43 | eqeltrd 2834 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)) |
| 45 | 44 | ex 412 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
| 46 | 3, 6, 9, 12, 21, 45 | nn0ind 12688 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ℂcc 11127 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 ℕ0cn0 12501 ↑cexp 14079 TopOpenctopn 17435 ℂfldccnfld 21315 TopOnctopon 22848 Cn ccn 23162 ×t ctx 23498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 |
| This theorem is referenced by: sqcn 24818 expcncf 24871 plycn 26218 plycnOLD 26219 psercn2 26384 psercn2OLD 26385 atansopn 26894 pntlem3 27572 climexp 45634 |
| Copyright terms: Public domain | W3C validator |