| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcn | Structured version Visualization version GIF version | ||
| Description: The power function on complex numbers, for fixed exponent 𝑁, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 11235. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| expcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| expcn | ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7439 | . . . 4 ⊢ (𝑛 = 0 → (𝑥↑𝑛) = (𝑥↑0)) | |
| 2 | 1 | mpteq2dv 5244 | . . 3 ⊢ (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0))) |
| 3 | 2 | eleq1d 2826 | . 2 ⊢ (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽))) |
| 4 | oveq2 7439 | . . . 4 ⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) | |
| 5 | 4 | mpteq2dv 5244 | . . 3 ⊢ (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑘))) |
| 6 | 5 | eleq1d 2826 | . 2 ⊢ (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽))) |
| 7 | oveq2 7439 | . . . 4 ⊢ (𝑛 = (𝑘 + 1) → (𝑥↑𝑛) = (𝑥↑(𝑘 + 1))) | |
| 8 | 7 | mpteq2dv 5244 | . . 3 ⊢ (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) |
| 9 | 8 | eleq1d 2826 | . 2 ⊢ (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
| 10 | oveq2 7439 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑥↑𝑛) = (𝑥↑𝑁)) | |
| 11 | 10 | mpteq2dv 5244 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) |
| 12 | 11 | eleq1d 2826 | . 2 ⊢ (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽))) |
| 13 | exp0 14106 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 14 | 13 | mpteq2ia 5245 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1) |
| 15 | expcn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 16 | 15 | cnfldtopon 24803 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℂ)) |
| 18 | 1cnd 11256 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
| 19 | 17, 17, 18 | cnmptc 23670 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽)) |
| 20 | 19 | mptru 1547 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽) |
| 21 | 14, 20 | eqeltri 2837 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽) |
| 22 | oveq1 7438 | . . . . . 6 ⊢ (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1))) | |
| 23 | 22 | cbvmptv 5255 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) |
| 24 | id 22 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → 𝑛 ∈ ℂ) | |
| 25 | simpl 482 | . . . . . . 7 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0) | |
| 26 | expp1 14109 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘) · 𝑛)) | |
| 27 | expcl 14120 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑𝑘) ∈ ℂ) | |
| 28 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ) | |
| 29 | ovmpot 7594 | . . . . . . . . 9 ⊢ (((𝑛↑𝑘) ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) | |
| 30 | 27, 28, 29 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛) = ((𝑛↑𝑘) · 𝑛)) |
| 31 | 26, 30 | eqtr4d 2780 | . . . . . . 7 ⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) |
| 32 | 24, 25, 31 | syl2anr 597 | . . . . . 6 ⊢ (((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) |
| 33 | 32 | mpteq2dva 5242 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) |
| 34 | 23, 33 | eqtrid 2789 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛))) |
| 35 | 16 | a1i 11 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘ℂ)) |
| 36 | oveq1 7438 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (𝑥↑𝑘) = (𝑛↑𝑘)) | |
| 37 | 36 | cbvmptv 5255 | . . . . . 6 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) |
| 38 | simpr 484 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) | |
| 39 | 37, 38 | eqeltrrid 2846 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑𝑘)) ∈ (𝐽 Cn 𝐽)) |
| 40 | 35 | cnmptid 23669 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽)) |
| 41 | 15 | mpomulcn 24891 | . . . . . 6 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| 42 | 41 | a1i 11 | . . . . 5 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 43 | 35, 39, 40, 42 | cnmpt12f 23674 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛↑𝑘)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑛)) ∈ (𝐽 Cn 𝐽)) |
| 44 | 34, 43 | eqeltrd 2841 | . . 3 ⊢ ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)) |
| 45 | 44 | ex 412 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))) |
| 46 | 3, 6, 9, 12, 21, 45 | nn0ind 12713 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 ℕ0cn0 12526 ↑cexp 14102 TopOpenctopn 17466 ℂfldccnfld 21364 TopOnctopon 22916 Cn ccn 23232 ×t ctx 23568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 |
| This theorem is referenced by: sqcn 24900 expcncf 24953 plycn 26300 plycnOLD 26301 psercn2 26466 psercn2OLD 26467 atansopn 26975 pntlem3 27653 climexp 45620 |
| Copyright terms: Public domain | W3C validator |