MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcn Structured version   Visualization version   GIF version

Theorem expcn 24035
Description: The power function on complex numbers, for fixed exponent 𝑁, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
expcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
expcn (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁

Proof of Theorem expcn
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . 4 (𝑛 = 0 → (𝑥𝑛) = (𝑥↑0))
21mpteq2dv 5176 . . 3 (𝑛 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑0)))
32eleq1d 2823 . 2 (𝑛 = 0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽)))
4 oveq2 7283 . . . 4 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
54mpteq2dv 5176 . . 3 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
65eleq1d 2823 . 2 (𝑛 = 𝑘 → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)))
7 oveq2 7283 . . . 4 (𝑛 = (𝑘 + 1) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
87mpteq2dv 5176 . . 3 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
98eleq1d 2823 . 2 (𝑛 = (𝑘 + 1) → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)))
10 oveq2 7283 . . . 4 (𝑛 = 𝑁 → (𝑥𝑛) = (𝑥𝑁))
1110mpteq2dv 5176 . . 3 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
1211eleq1d 2823 . 2 (𝑛 = 𝑁 → ((𝑥 ∈ ℂ ↦ (𝑥𝑛)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (𝐽 Cn 𝐽)))
13 exp0 13786 . . . 4 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
1413mpteq2ia 5177 . . 3 (𝑥 ∈ ℂ ↦ (𝑥↑0)) = (𝑥 ∈ ℂ ↦ 1)
15 expcn.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
1615cnfldtopon 23946 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
1716a1i 11 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
18 1cnd 10970 . . . . 5 (⊤ → 1 ∈ ℂ)
1917, 17, 18cnmptc 22813 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
2019mptru 1546 . . 3 (𝑥 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽)
2114, 20eqeltri 2835 . 2 (𝑥 ∈ ℂ ↦ (𝑥↑0)) ∈ (𝐽 Cn 𝐽)
22 oveq1 7282 . . . . . 6 (𝑥 = 𝑛 → (𝑥↑(𝑘 + 1)) = (𝑛↑(𝑘 + 1)))
2322cbvmptv 5187 . . . . 5 (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1)))
24 id 22 . . . . . . 7 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
25 simpl 483 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝑘 ∈ ℕ0)
26 expp1 13789 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑛↑(𝑘 + 1)) = ((𝑛𝑘) · 𝑛))
2724, 25, 26syl2anr 597 . . . . . 6 (((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑛 ∈ ℂ) → (𝑛↑(𝑘 + 1)) = ((𝑛𝑘) · 𝑛))
2827mpteq2dva 5174 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛𝑘) · 𝑛)))
2923, 28eqtrid 2790 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑛 ∈ ℂ ↦ ((𝑛𝑘) · 𝑛)))
3016a1i 11 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘ℂ))
31 oveq1 7282 . . . . . . 7 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
3231cbvmptv 5187 . . . . . 6 (𝑥 ∈ ℂ ↦ (𝑥𝑘)) = (𝑛 ∈ ℂ ↦ (𝑛𝑘))
33 simpr 485 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽))
3432, 33eqeltrrid 2844 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ (𝑛𝑘)) ∈ (𝐽 Cn 𝐽))
3530cnmptid 22812 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ 𝑛) ∈ (𝐽 Cn 𝐽))
3615mulcn 24030 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3736a1i 11 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3830, 34, 35, 37cnmpt12f 22817 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑛 ∈ ℂ ↦ ((𝑛𝑘) · 𝑛)) ∈ (𝐽 Cn 𝐽))
3929, 38eqeltrd 2839 . . 3 ((𝑘 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽)) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽))
4039ex 413 . 2 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (𝐽 Cn 𝐽) → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) ∈ (𝐽 Cn 𝐽)))
413, 6, 9, 12, 21, 40nn0ind 12415 1 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wtru 1540  wcel 2106  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  0cn0 12233  cexp 13782  TopOpenctopn 17132  fldccnfld 20597  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475
This theorem is referenced by:  sqcn  24037  expcncf  24089  plycn  25422  psercn2  25582  atansopn  26082  pntlem3  26757  climexp  43146
  Copyright terms: Public domain W3C validator