Step | Hyp | Ref
| Expression |
1 | | oveq2 7420 |
. . . 4
β’ (π = 0 β (π₯βπ) = (π₯β0)) |
2 | 1 | mpteq2dv 5250 |
. . 3
β’ (π = 0 β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯β0))) |
3 | 2 | eleq1d 2817 |
. 2
β’ (π = 0 β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯β0)) β (π½ Cn π½))) |
4 | | oveq2 7420 |
. . . 4
β’ (π = π β (π₯βπ) = (π₯βπ)) |
5 | 4 | mpteq2dv 5250 |
. . 3
β’ (π = π β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
6 | 5 | eleq1d 2817 |
. 2
β’ (π = π β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯βπ)) β (π½ Cn π½))) |
7 | | oveq2 7420 |
. . . 4
β’ (π = (π + 1) β (π₯βπ) = (π₯β(π + 1))) |
8 | 7 | mpteq2dv 5250 |
. . 3
β’ (π = (π + 1) β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯β(π + 1)))) |
9 | 8 | eleq1d 2817 |
. 2
β’ (π = (π + 1) β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯β(π + 1))) β (π½ Cn π½))) |
10 | | oveq2 7420 |
. . . 4
β’ (π = π β (π₯βπ) = (π₯βπ)) |
11 | 10 | mpteq2dv 5250 |
. . 3
β’ (π = π β (π₯ β β β¦ (π₯βπ)) = (π₯ β β β¦ (π₯βπ))) |
12 | 11 | eleq1d 2817 |
. 2
β’ (π = π β ((π₯ β β β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯βπ)) β (π½ Cn π½))) |
13 | | exp0 14038 |
. . . 4
β’ (π₯ β β β (π₯β0) = 1) |
14 | 13 | mpteq2ia 5251 |
. . 3
β’ (π₯ β β β¦ (π₯β0)) = (π₯ β β β¦ 1) |
15 | | expcn.j |
. . . . . . 7
β’ π½ =
(TopOpenββfld) |
16 | 15 | cnfldtopon 24619 |
. . . . . 6
β’ π½ β
(TopOnββ) |
17 | 16 | a1i 11 |
. . . . 5
β’ (β€
β π½ β
(TopOnββ)) |
18 | | 1cnd 11216 |
. . . . 5
β’ (β€
β 1 β β) |
19 | 17, 17, 18 | cnmptc 23486 |
. . . 4
β’ (β€
β (π₯ β β
β¦ 1) β (π½ Cn
π½)) |
20 | 19 | mptru 1547 |
. . 3
β’ (π₯ β β β¦ 1)
β (π½ Cn π½) |
21 | 14, 20 | eqeltri 2828 |
. 2
β’ (π₯ β β β¦ (π₯β0)) β (π½ Cn π½) |
22 | | oveq1 7419 |
. . . . . 6
β’ (π₯ = π β (π₯β(π + 1)) = (πβ(π + 1))) |
23 | 22 | cbvmptv 5261 |
. . . . 5
β’ (π₯ β β β¦ (π₯β(π + 1))) = (π β β β¦ (πβ(π + 1))) |
24 | | id 22 |
. . . . . . 7
β’ (π β β β π β
β) |
25 | | simpl 482 |
. . . . . . 7
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β π β β0) |
26 | | expp1 14041 |
. . . . . . . 8
β’ ((π β β β§ π β β0)
β (πβ(π + 1)) = ((πβπ) Β· π)) |
27 | | expcl 14052 |
. . . . . . . . 9
β’ ((π β β β§ π β β0)
β (πβπ) β
β) |
28 | | simpl 482 |
. . . . . . . . 9
β’ ((π β β β§ π β β0)
β π β
β) |
29 | | ovmpot 7572 |
. . . . . . . . 9
β’ (((πβπ) β β β§ π β β) β ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π) = ((πβπ) Β· π)) |
30 | 27, 28, 29 | syl2anc 583 |
. . . . . . . 8
β’ ((π β β β§ π β β0)
β ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π) = ((πβπ) Β· π)) |
31 | 26, 30 | eqtr4d 2774 |
. . . . . . 7
β’ ((π β β β§ π β β0)
β (πβ(π + 1)) = ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π)) |
32 | 24, 25, 31 | syl2anr 596 |
. . . . . 6
β’ (((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β§ π β β) β (πβ(π + 1)) = ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π)) |
33 | 32 | mpteq2dva 5248 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ (πβ(π + 1))) = (π β β β¦ ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π))) |
34 | 23, 33 | eqtrid 2783 |
. . . 4
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π₯ β β β¦ (π₯β(π + 1))) = (π β β β¦ ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π))) |
35 | 16 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β π½ β
(TopOnββ)) |
36 | | oveq1 7419 |
. . . . . . 7
β’ (π₯ = π β (π₯βπ) = (πβπ)) |
37 | 36 | cbvmptv 5261 |
. . . . . 6
β’ (π₯ β β β¦ (π₯βπ)) = (π β β β¦ (πβπ)) |
38 | | simpr 484 |
. . . . . 6
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π₯ β β β¦ (π₯βπ)) β (π½ Cn π½)) |
39 | 37, 38 | eqeltrrid 2837 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ (πβπ)) β (π½ Cn π½)) |
40 | 35 | cnmptid 23485 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ π) β (π½ Cn π½)) |
41 | 15 | mpomulcn 24705 |
. . . . . 6
β’ (π’ β β, π£ β β β¦ (π’ Β· π£)) β ((π½ Γt π½) Cn π½) |
42 | 41 | a1i 11 |
. . . . 5
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π’ β β, π£ β β β¦ (π’ Β· π£)) β ((π½ Γt π½) Cn π½)) |
43 | 35, 39, 40, 42 | cnmpt12f 23490 |
. . . 4
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π β β β¦ ((πβπ)(π’ β β, π£ β β β¦ (π’ Β· π£))π)) β (π½ Cn π½)) |
44 | 34, 43 | eqeltrd 2832 |
. . 3
β’ ((π β β0
β§ (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) β (π₯ β β β¦ (π₯β(π + 1))) β (π½ Cn π½)) |
45 | 44 | ex 412 |
. 2
β’ (π β β0
β ((π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½) β (π₯ β β β¦ (π₯β(π + 1))) β (π½ Cn π½))) |
46 | 3, 6, 9, 12, 21, 45 | nn0ind 12664 |
1
β’ (π β β0
β (π₯ β β
β¦ (π₯βπ)) β (π½ Cn π½)) |