| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnsubrglem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubdrg 21566 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11207. (Revised by GG, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
| cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 |
| cnsubrglem.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnsubrglem | ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
| 3 | cnsubglem.3 | . . 3 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
| 4 | cnsubrglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 5 | 1, 2, 3, 4 | cnsubglem 21381 | . 2 ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
| 6 | cnsubrglem.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 7 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℂ) |
| 8 | 1 | ax-gen 1795 | . . . . . . . . . 10 ⊢ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| 9 | eleq1 2822 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | eleq1 2822 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
| 11 | 9, 10 | imbi12d 344 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) ↔ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ))) |
| 12 | 11 | spvv 1996 | . . . . . . . . . 10 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ)) |
| 13 | 8, 12 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ) |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
| 15 | 7, 14 | jca 511 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) |
| 16 | ovmpot 7566 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
| 18 | 17 | eqcomd 2741 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) |
| 19 | 18 | eleq1d 2819 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)) |
| 20 | 6, 19 | mpbid 232 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴) |
| 21 | 20 | rgen2 3184 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴 |
| 22 | cnring 21351 | . . 3 ⊢ ℂfld ∈ Ring | |
| 23 | cnfldbas 21317 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 24 | cnfld1 21354 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
| 25 | mpocnfldmul 21320 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 26 | 23, 24, 25 | issubrg2 20550 | . . 3 ⊢ (ℂfld ∈ Ring → (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴))) |
| 27 | 22, 26 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)) |
| 28 | 5, 4, 21, 27 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ℂcc 11125 1c1 11128 + caddc 11130 · cmul 11132 -cneg 11465 SubGrpcsubg 19101 Ringcrg 20191 SubRingcsubrg 20527 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-subg 19104 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-subrng 20504 df-subrg 20528 df-cnfld 21314 |
| This theorem is referenced by: cnsubdrglem 21384 zsubrg 21386 gzsubrg 21387 cnstrcvs 25090 cncvs 25094 |
| Copyright terms: Public domain | W3C validator |