MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrglem Structured version   Visualization version   GIF version

Theorem cnsubrglem 21340
Description: Lemma for resubdrg 21524 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11155. (Revised by GG, 30-Apr-2025.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubglem.3 (𝑥𝐴 → -𝑥𝐴)
cnsubrglem.4 1 ∈ 𝐴
cnsubrglem.5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
Assertion
Ref Expression
cnsubrglem 𝐴 ∈ (SubRing‘ℂfld)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnsubrglem
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
2 cnsubglem.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3 cnsubglem.3 . . 3 (𝑥𝐴 → -𝑥𝐴)
4 cnsubrglem.4 . . 3 1 ∈ 𝐴
51, 2, 3, 4cnsubglem 21339 . 2 𝐴 ∈ (SubGrp‘ℂfld)
6 cnsubrglem.5 . . . 4 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
71adantr 480 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → 𝑥 ∈ ℂ)
81ax-gen 1795 . . . . . . . . . 10 𝑥(𝑥𝐴𝑥 ∈ ℂ)
9 eleq1 2817 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 eleq1 2817 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 ∈ ℂ ↔ 𝑦 ∈ ℂ))
119, 10imbi12d 344 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝑥 ∈ ℂ) ↔ (𝑦𝐴𝑦 ∈ ℂ)))
1211spvv 1988 . . . . . . . . . 10 (∀𝑥(𝑥𝐴𝑥 ∈ ℂ) → (𝑦𝐴𝑦 ∈ ℂ))
138, 12ax-mp 5 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → 𝑦 ∈ ℂ)
157, 14jca 511 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
16 ovmpot 7553 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦))
1715, 16syl 17 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦))
1817eqcomd 2736 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))
1918eleq1d 2814 . . . 4 ((𝑥𝐴𝑦𝐴) → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴))
206, 19mpbid 232 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)
2120rgen2 3178 . 2 𝑥𝐴𝑦𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴
22 cnring 21309 . . 3 fld ∈ Ring
23 cnfldbas 21275 . . . 4 ℂ = (Base‘ℂfld)
24 cnfld1 21312 . . . 4 1 = (1r‘ℂfld)
25 mpocnfldmul 21278 . . . 4 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
2623, 24, 25issubrg2 20508 . . 3 (ℂfld ∈ Ring → (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)))
2722, 26ax-mp 5 . 2 (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴))
285, 4, 21, 27mpbir3an 1342 1 𝐴 ∈ (SubRing‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  cmpo 7392  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  -cneg 11413  SubGrpcsubg 19059  Ringcrg 20149  SubRingcsubrg 20485  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-cnfld 21272
This theorem is referenced by:  cnsubdrglem  21342  zsubrg  21344  gzsubrg  21345  cnstrcvs  25048  cncvs  25052
  Copyright terms: Public domain W3C validator