MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubrglem Structured version   Visualization version   GIF version

Theorem cnsubrglem 21323
Description: Lemma for resubdrg 21515 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11089. (Revised by GG, 30-Apr-2025.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubglem.3 (𝑥𝐴 → -𝑥𝐴)
cnsubrglem.4 1 ∈ 𝐴
cnsubrglem.5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
Assertion
Ref Expression
cnsubrglem 𝐴 ∈ (SubRing‘ℂfld)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnsubrglem
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
2 cnsubglem.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3 cnsubglem.3 . . 3 (𝑥𝐴 → -𝑥𝐴)
4 cnsubrglem.4 . . 3 1 ∈ 𝐴
51, 2, 3, 4cnsubglem 21322 . 2 𝐴 ∈ (SubGrp‘ℂfld)
6 cnsubrglem.5 . . . 4 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
71adantr 480 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → 𝑥 ∈ ℂ)
81ax-gen 1795 . . . . . . . . . 10 𝑥(𝑥𝐴𝑥 ∈ ℂ)
9 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 ∈ ℂ ↔ 𝑦 ∈ ℂ))
119, 10imbi12d 344 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝑥 ∈ ℂ) ↔ (𝑦𝐴𝑦 ∈ ℂ)))
1211spvv 1988 . . . . . . . . . 10 (∀𝑥(𝑥𝐴𝑥 ∈ ℂ) → (𝑦𝐴𝑦 ∈ ℂ))
138, 12ax-mp 5 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝑥𝐴𝑦𝐴) → 𝑦 ∈ ℂ)
157, 14jca 511 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
16 ovmpot 7510 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦))
1715, 16syl 17 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦))
1817eqcomd 2735 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦))
1918eleq1d 2813 . . . 4 ((𝑥𝐴𝑦𝐴) → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴))
206, 19mpbid 232 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)
2120rgen2 3169 . 2 𝑥𝐴𝑦𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴
22 cnring 21297 . . 3 fld ∈ Ring
23 cnfldbas 21265 . . . 4 ℂ = (Base‘ℂfld)
24 cnfld1 21300 . . . 4 1 = (1r‘ℂfld)
25 mpocnfldmul 21268 . . . 4 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
2623, 24, 25issubrg2 20477 . . 3 (ℂfld ∈ Ring → (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)))
2722, 26ax-mp 5 . 2 (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴))
285, 4, 21, 27mpbir3an 1342 1 𝐴 ∈ (SubRing‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  cfv 6482  (class class class)co 7349  cmpo 7351  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  -cneg 11348  SubGrpcsubg 18999  Ringcrg 20118  SubRingcsubrg 20454  fldccnfld 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-cnfld 21262
This theorem is referenced by:  cnsubdrglem  21325  zsubrg  21327  gzsubrg  21328  cnstrcvs  25039  cncvs  25043
  Copyright terms: Public domain W3C validator