| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnsubrglem | Structured version Visualization version GIF version | ||
| Description: Lemma for resubdrg 21626 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11235. (Revised by GG, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
| cnsubglem.3 | ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) |
| cnsubrglem.4 | ⊢ 1 ∈ 𝐴 |
| cnsubrglem.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnsubrglem | ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
| 2 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
| 3 | cnsubglem.3 | . . 3 ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) | |
| 4 | cnsubrglem.4 | . . 3 ⊢ 1 ∈ 𝐴 | |
| 5 | 1, 2, 3, 4 | cnsubglem 21433 | . 2 ⊢ 𝐴 ∈ (SubGrp‘ℂfld) |
| 6 | cnsubrglem.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) | |
| 7 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℂ) |
| 8 | 1 | ax-gen 1795 | . . . . . . . . . 10 ⊢ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
| 9 | eleq1 2829 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | eleq1 2829 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
| 11 | 9, 10 | imbi12d 344 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) ↔ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ))) |
| 12 | 11 | spvv 1996 | . . . . . . . . . 10 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ)) |
| 13 | 8, 12 | ax-mp 5 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ) |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
| 15 | 7, 14 | jca 511 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) |
| 16 | ovmpot 7594 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
| 18 | 17 | eqcomd 2743 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)) |
| 19 | 18 | eleq1d 2826 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)) |
| 20 | 6, 19 | mpbid 232 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴) |
| 21 | 20 | rgen2 3199 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴 |
| 22 | cnring 21403 | . . 3 ⊢ ℂfld ∈ Ring | |
| 23 | cnfldbas 21368 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 24 | cnfld1 21406 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
| 25 | mpocnfldmul 21371 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 26 | 23, 24, 25 | issubrg2 20592 | . . 3 ⊢ (ℂfld ∈ Ring → (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴))) |
| 27 | 22, 26 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ (SubRing‘ℂfld) ↔ (𝐴 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ 𝐴)) |
| 28 | 5, 4, 21, 27 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (SubRing‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 1c1 11156 + caddc 11158 · cmul 11160 -cneg 11493 SubGrpcsubg 19138 Ringcrg 20230 SubRingcsubrg 20569 ℂfldccnfld 21364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-subrng 20546 df-subrg 20570 df-cnfld 21365 |
| This theorem is referenced by: cnsubdrglem 21436 zsubrg 21438 gzsubrg 21439 cnstrcvs 25174 cncvs 25178 |
| Copyright terms: Public domain | W3C validator |