Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnfld1 | Structured version Visualization version GIF version |
Description: One is the unit element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld1 | ⊢ 1 = (1r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10634 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | mulid2 10679 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
3 | mulid1 10678 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
4 | 2, 3 | jca 516 | . . . . 5 ⊢ (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
5 | 4 | rgen 3081 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥) |
6 | 1, 5 | pm3.2i 475 | . . 3 ⊢ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) |
7 | cnring 20189 | . . . 4 ⊢ ℂfld ∈ Ring | |
8 | cnfldbas 20171 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
9 | cnfldmul 20173 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
10 | eqid 2759 | . . . . 5 ⊢ (1r‘ℂfld) = (1r‘ℂfld) | |
11 | 8, 9, 10 | isringid 19395 | . . . 4 ⊢ (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1)) |
12 | 7, 11 | ax-mp 5 | . . 3 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1) |
13 | 6, 12 | mpbi 233 | . 2 ⊢ (1r‘ℂfld) = 1 |
14 | 13 | eqcomi 2768 | 1 ⊢ 1 = (1r‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ‘cfv 6336 (class class class)co 7151 ℂcc 10574 1c1 10577 · cmul 10581 1rcur 19320 Ringcrg 19366 ℂfldccnfld 20167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-addf 10655 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-fz 12941 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-plusg 16637 df-mulr 16638 df-starv 16639 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-grp 18173 df-cmn 18976 df-mgp 19309 df-ur 19321 df-ring 19368 df-cring 19369 df-cnfld 20168 |
This theorem is referenced by: cndrng 20196 cnfldinv 20198 cnfldexp 20200 cnsubrglem 20217 cnsubdrglem 20218 zsssubrg 20225 cnmgpid 20229 gzrngunitlem 20232 expmhm 20236 nn0srg 20237 rge0srg 20238 zring1 20250 re1r 20379 clm1 23775 isclmp 23799 cnlmod 23842 cphsubrglem 23879 taylply2 25063 efsubm 25243 amgmlem 25675 amgm 25676 wilthlem2 25754 wilthlem3 25755 dchrelbas3 25922 dchrzrh1 25928 dchrmulcl 25933 dchrn0 25934 dchrinvcl 25937 dchrfi 25939 dchrabs 25944 sumdchr2 25954 rpvmasum2 26196 qrng1 26306 psgnid 30891 cnmsgn0g 30940 altgnsg 30943 xrge0slmod 31070 znfermltl 31084 iistmd 31374 xrge0iifmhm 31411 cnsrexpcl 40483 rngunsnply 40491 proot1ex 40519 amgmwlem 45722 amgmlemALT 45723 |
Copyright terms: Public domain | W3C validator |