![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfld1 | Structured version Visualization version GIF version |
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11264. (Revised by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
cnfld1 | ⊢ 1 = (1r‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | ovmpot 7611 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥)) | |
3 | 2 | eqcomd 2746 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
4 | 1, 3 | mpan 689 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
5 | mullid 11289 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
6 | 4, 5 | eqtr3d 2782 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥) |
7 | ovmpot 7611 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) | |
8 | 1, 7 | mpan2 690 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) |
9 | mulrid 11288 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
10 | 8, 9 | eqtrd 2780 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) |
11 | 6, 10 | jca 511 | . . . . 5 ⊢ (𝑥 ∈ ℂ → ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) |
12 | 11 | rgen 3069 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) |
13 | 1, 12 | pm3.2i 470 | . . 3 ⊢ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) |
14 | cnring 21426 | . . . 4 ⊢ ℂfld ∈ Ring | |
15 | cnfldbas 21391 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
16 | mpocnfldmul 21394 | . . . . 5 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
17 | eqid 2740 | . . . . 5 ⊢ (1r‘ℂfld) = (1r‘ℂfld) | |
18 | 15, 16, 17 | isringid 20294 | . . . 4 ⊢ (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1)) |
19 | 14, 18 | ax-mp 5 | . . 3 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1) |
20 | 13, 19 | mpbi 230 | . 2 ⊢ (1r‘ℂfld) = 1 |
21 | 20 | eqcomi 2749 | 1 ⊢ 1 = (1r‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℂcc 11182 1c1 11185 · cmul 11189 1rcur 20208 Ringcrg 20260 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-cmn 19824 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-cnfld 21388 |
This theorem is referenced by: cndrng 21434 cndrngOLD 21435 cnfldinv 21438 cnfldexp 21440 cnsubrglem 21457 cnsubrglemOLD 21458 cnsubdrglem 21459 zsssubrg 21466 cnmgpid 21470 gzrngunitlem 21473 expmhm 21477 nn0srg 21478 rge0srg 21479 zring1 21493 fermltlchr 21567 re1r 21654 clm1 25125 isclmp 25149 cnlmod 25192 cphsubrglem 25230 taylply2 26427 taylply2OLD 26428 efsubm 26611 amgmlem 27051 amgm 27052 wilthlem2 27130 wilthlem3 27131 dchrelbas3 27300 dchrzrh1 27306 dchrmulcl 27311 dchrn0 27312 dchrinvcl 27315 dchrfi 27317 dchrabs 27322 sumdchr2 27332 rpvmasum2 27574 qrng1 27684 psgnid 33090 cnmsgn0g 33139 altgnsg 33142 xrge0slmod 33341 znfermltl 33359 iistmd 33848 xrge0iifmhm 33885 cnsrexpcl 43122 rngunsnply 43130 proot1ex 43157 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |