MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfld1 Structured version   Visualization version   GIF version

Theorem cnfld1 21424
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11233. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfld1 1 = (1r‘ℂfld)

Proof of Theorem cnfld1
Dummy variables 𝑥 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11211 . . . 4 1 ∈ ℂ
2 ovmpot 7594 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥))
32eqcomd 2741 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
41, 3mpan 690 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
5 mullid 11258 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
64, 5eqtr3d 2777 . . . . . 6 (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥)
7 ovmpot 7594 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
81, 7mpan2 691 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
9 mulrid 11257 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
108, 9eqtrd 2775 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
116, 10jca 511 . . . . 5 (𝑥 ∈ ℂ → ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
1211rgen 3061 . . . 4 𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
131, 12pm3.2i 470 . . 3 (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
14 cnring 21421 . . . 4 fld ∈ Ring
15 cnfldbas 21386 . . . . 5 ℂ = (Base‘ℂfld)
16 mpocnfldmul 21389 . . . . 5 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
17 eqid 2735 . . . . 5 (1r‘ℂfld) = (1r‘ℂfld)
1815, 16, 17isringid 20285 . . . 4 (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1))
1914, 18ax-mp 5 . . 3 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1)
2013, 19mpbi 230 . 2 (1r‘ℂfld) = 1
2120eqcomi 2744 1 1 = (1r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  1c1 11154   · cmul 11158  1rcur 20199  Ringcrg 20251  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-cmn 19815  df-mgp 20153  df-ur 20200  df-ring 20253  df-cring 20254  df-cnfld 21383
This theorem is referenced by:  cndrng  21429  cndrngOLD  21430  cnfldinv  21433  cnfldexp  21435  cnsubrglem  21452  cnsubrglemOLD  21453  cnsubdrglem  21454  zsssubrg  21461  cnmgpid  21465  gzrngunitlem  21468  expmhm  21472  nn0srg  21473  rge0srg  21474  zring1  21488  fermltlchr  21562  re1r  21649  clm1  25120  isclmp  25144  cnlmod  25187  cphsubrglem  25225  taylply2  26424  taylply2OLD  26425  efsubm  26608  amgmlem  27048  amgm  27049  wilthlem2  27127  wilthlem3  27128  dchrelbas3  27297  dchrzrh1  27303  dchrmulcl  27308  dchrn0  27309  dchrinvcl  27312  dchrfi  27314  dchrabs  27319  sumdchr2  27329  rpvmasum2  27571  qrng1  27681  psgnid  33100  cnmsgn0g  33149  altgnsg  33152  xrge0slmod  33356  znfermltl  33374  iistmd  33863  xrge0iifmhm  33900  cnsrexpcl  43154  rngunsnply  43158  proot1ex  43185  amgmwlem  49033  amgmlemALT  49034
  Copyright terms: Public domain W3C validator