MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfld1 Structured version   Visualization version   GIF version

Theorem cnfld1 21300
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11089. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfld1 1 = (1r‘ℂfld)

Proof of Theorem cnfld1
Dummy variables 𝑥 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11067 . . . 4 1 ∈ ℂ
2 ovmpot 7510 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥))
32eqcomd 2735 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
41, 3mpan 690 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
5 mullid 11114 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
64, 5eqtr3d 2766 . . . . . 6 (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥)
7 ovmpot 7510 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
81, 7mpan2 691 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
9 mulrid 11113 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
108, 9eqtrd 2764 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
116, 10jca 511 . . . . 5 (𝑥 ∈ ℂ → ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
1211rgen 3046 . . . 4 𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
131, 12pm3.2i 470 . . 3 (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
14 cnring 21297 . . . 4 fld ∈ Ring
15 cnfldbas 21265 . . . . 5 ℂ = (Base‘ℂfld)
16 mpocnfldmul 21268 . . . . 5 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
17 eqid 2729 . . . . 5 (1r‘ℂfld) = (1r‘ℂfld)
1815, 16, 17isringid 20156 . . . 4 (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1))
1914, 18ax-mp 5 . . 3 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1)
2013, 19mpbi 230 . 2 (1r‘ℂfld) = 1
2120eqcomi 2738 1 1 = (1r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6482  (class class class)co 7349  cmpo 7351  cc 11007  1c1 11010   · cmul 11014  1rcur 20066  Ringcrg 20118  fldccnfld 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-cmn 19661  df-mgp 20026  df-ur 20067  df-ring 20120  df-cring 20121  df-cnfld 21262
This theorem is referenced by:  cndrng  21305  cndrngOLD  21306  cnfldinv  21309  cnfldexp  21311  cnsubrglem  21323  cnsubrglemOLD  21324  cnsubdrglem  21325  zsssubrg  21332  cnmgpid  21336  gzrngunitlem  21339  expmhm  21343  nn0srg  21344  rge0srg  21345  zring1  21366  fermltlchr  21436  re1r  21520  clm1  24971  isclmp  24995  cnlmod  25038  cphsubrglem  25075  taylply2  26273  taylply2OLD  26274  efsubm  26458  amgmlem  26898  amgm  26899  wilthlem2  26977  wilthlem3  26978  dchrelbas3  27147  dchrzrh1  27153  dchrmulcl  27158  dchrn0  27159  dchrinvcl  27162  dchrfi  27164  dchrabs  27169  sumdchr2  27179  rpvmasum2  27421  qrng1  27531  psgnid  33048  cnmsgn0g  33097  altgnsg  33100  xrge0slmod  33294  znfermltl  33312  constrsdrg  33758  iistmd  33885  xrge0iifmhm  33922  cnsrexpcl  43158  rngunsnply  43162  proot1ex  43189  amgmwlem  49807  amgmlemALT  49808
  Copyright terms: Public domain W3C validator