![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfld1 | Structured version Visualization version GIF version |
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld1 | โข 1 = (1rโโfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11168 | . . . 4 โข 1 โ โ | |
2 | mullid 11213 | . . . . . 6 โข (๐ฅ โ โ โ (1 ยท ๐ฅ) = ๐ฅ) | |
3 | mulrid 11212 | . . . . . 6 โข (๐ฅ โ โ โ (๐ฅ ยท 1) = ๐ฅ) | |
4 | 2, 3 | jca 513 | . . . . 5 โข (๐ฅ โ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) |
5 | 4 | rgen 3064 | . . . 4 โข โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ) |
6 | 1, 5 | pm3.2i 472 | . . 3 โข (1 โ โ โง โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) |
7 | cnring 20967 | . . . 4 โข โfld โ Ring | |
8 | cnfldbas 20948 | . . . . 5 โข โ = (Baseโโfld) | |
9 | cnfldmul 20950 | . . . . 5 โข ยท = (.rโโfld) | |
10 | eqid 2733 | . . . . 5 โข (1rโโfld) = (1rโโfld) | |
11 | 8, 9, 10 | isringid 20088 | . . . 4 โข (โfld โ Ring โ ((1 โ โ โง โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) โ (1rโโfld) = 1)) |
12 | 7, 11 | ax-mp 5 | . . 3 โข ((1 โ โ โง โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) โ (1rโโfld) = 1) |
13 | 6, 12 | mpbi 229 | . 2 โข (1rโโfld) = 1 |
14 | 13 | eqcomi 2742 | 1 โข 1 = (1rโโfld) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 โง wa 397 = wceq 1542 โ wcel 2107 โwral 3062 โcfv 6544 (class class class)co 7409 โcc 11108 1c1 11111 ยท cmul 11115 1rcur 20004 Ringcrg 20056 โfldccnfld 20944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-cnfld 20945 |
This theorem is referenced by: cndrng 20974 cnfldinv 20976 cnfldexp 20978 cnsubrglem 20995 cnsubdrglem 20996 zsssubrg 21003 cnmgpid 21007 gzrngunitlem 21010 expmhm 21014 nn0srg 21015 rge0srg 21016 zring1 21029 re1r 21166 clm1 24589 isclmp 24613 cnlmod 24656 cphsubrglem 24694 taylply2 25880 efsubm 26060 amgmlem 26494 amgm 26495 wilthlem2 26573 wilthlem3 26574 dchrelbas3 26741 dchrzrh1 26747 dchrmulcl 26752 dchrn0 26753 dchrinvcl 26756 dchrfi 26758 dchrabs 26763 sumdchr2 26773 rpvmasum2 27015 qrng1 27125 psgnid 32256 cnmsgn0g 32305 altgnsg 32308 xrge0slmod 32463 fermltlchr 32478 znfermltl 32479 iistmd 32882 xrge0iifmhm 32919 cnsrexpcl 41907 rngunsnply 41915 proot1ex 41943 amgmwlem 47849 amgmlemALT 47850 |
Copyright terms: Public domain | W3C validator |