MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfld1 Structured version   Visualization version   GIF version

Theorem cnfld1 21429
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11264. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfld1 1 = (1r‘ℂfld)

Proof of Theorem cnfld1
Dummy variables 𝑥 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11242 . . . 4 1 ∈ ℂ
2 ovmpot 7611 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥))
32eqcomd 2746 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
41, 3mpan 689 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥))
5 mullid 11289 . . . . . . 7 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
64, 5eqtr3d 2782 . . . . . 6 (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥)
7 ovmpot 7611 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
81, 7mpan2 690 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1))
9 mulrid 11288 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
108, 9eqtrd 2780 . . . . . 6 (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
116, 10jca 511 . . . . 5 (𝑥 ∈ ℂ → ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
1211rgen 3069 . . . 4 𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)
131, 12pm3.2i 470 . . 3 (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥))
14 cnring 21426 . . . 4 fld ∈ Ring
15 cnfldbas 21391 . . . . 5 ℂ = (Base‘ℂfld)
16 mpocnfldmul 21394 . . . . 5 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
17 eqid 2740 . . . . 5 (1r‘ℂfld) = (1r‘ℂfld)
1815, 16, 17isringid 20294 . . . 4 (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1))
1914, 18ax-mp 5 . . 3 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥 ∧ (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥)) ↔ (1r‘ℂfld) = 1)
2013, 19mpbi 230 . 2 (1r‘ℂfld) = 1
2120eqcomi 2749 1 1 = (1r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  cmpo 7450  cc 11182  1c1 11185   · cmul 11189  1rcur 20208  Ringcrg 20260  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-cmn 19824  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-cnfld 21388
This theorem is referenced by:  cndrng  21434  cndrngOLD  21435  cnfldinv  21438  cnfldexp  21440  cnsubrglem  21457  cnsubrglemOLD  21458  cnsubdrglem  21459  zsssubrg  21466  cnmgpid  21470  gzrngunitlem  21473  expmhm  21477  nn0srg  21478  rge0srg  21479  zring1  21493  fermltlchr  21567  re1r  21654  clm1  25125  isclmp  25149  cnlmod  25192  cphsubrglem  25230  taylply2  26427  taylply2OLD  26428  efsubm  26611  amgmlem  27051  amgm  27052  wilthlem2  27130  wilthlem3  27131  dchrelbas3  27300  dchrzrh1  27306  dchrmulcl  27311  dchrn0  27312  dchrinvcl  27315  dchrfi  27317  dchrabs  27322  sumdchr2  27332  rpvmasum2  27574  qrng1  27684  psgnid  33090  cnmsgn0g  33139  altgnsg  33142  xrge0slmod  33341  znfermltl  33359  iistmd  33848  xrge0iifmhm  33885  cnsrexpcl  43122  rngunsnply  43130  proot1ex  43157  amgmwlem  48896  amgmlemALT  48897
  Copyright terms: Public domain W3C validator