![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfld1 | Structured version Visualization version GIF version |
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cnfld1 | โข 1 = (1rโโfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11170 | . . . 4 โข 1 โ โ | |
2 | mullid 11217 | . . . . . 6 โข (๐ฅ โ โ โ (1 ยท ๐ฅ) = ๐ฅ) | |
3 | mulrid 11216 | . . . . . 6 โข (๐ฅ โ โ โ (๐ฅ ยท 1) = ๐ฅ) | |
4 | 2, 3 | jca 512 | . . . . 5 โข (๐ฅ โ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) |
5 | 4 | rgen 3063 | . . . 4 โข โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ) |
6 | 1, 5 | pm3.2i 471 | . . 3 โข (1 โ โ โง โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) |
7 | cnring 21167 | . . . 4 โข โfld โ Ring | |
8 | cnfldbas 21148 | . . . . 5 โข โ = (Baseโโfld) | |
9 | cnfldmul 21150 | . . . . 5 โข ยท = (.rโโfld) | |
10 | eqid 2732 | . . . . 5 โข (1rโโfld) = (1rโโfld) | |
11 | 8, 9, 10 | isringid 20159 | . . . 4 โข (โfld โ Ring โ ((1 โ โ โง โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) โ (1rโโfld) = 1)) |
12 | 7, 11 | ax-mp 5 | . . 3 โข ((1 โ โ โง โ๐ฅ โ โ ((1 ยท ๐ฅ) = ๐ฅ โง (๐ฅ ยท 1) = ๐ฅ)) โ (1rโโfld) = 1) |
13 | 6, 12 | mpbi 229 | . 2 โข (1rโโfld) = 1 |
14 | 13 | eqcomi 2741 | 1 โข 1 = (1rโโfld) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 โง wa 396 = wceq 1541 โ wcel 2106 โwral 3061 โcfv 6543 (class class class)co 7411 โcc 11110 1c1 11113 ยท cmul 11117 1rcur 20075 Ringcrg 20127 โfldccnfld 21144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-cmn 19691 df-mgp 20029 df-ur 20076 df-ring 20129 df-cring 20130 df-cnfld 21145 |
This theorem is referenced by: cndrng 21174 cnfldinv 21176 cnfldexp 21178 cnsubrglem 21195 cnsubdrglem 21196 zsssubrg 21203 cnmgpid 21207 gzrngunitlem 21210 expmhm 21214 nn0srg 21215 rge0srg 21216 zring1 21230 re1r 21385 clm1 24813 isclmp 24837 cnlmod 24880 cphsubrglem 24918 taylply2 26104 efsubm 26284 amgmlem 26718 amgm 26719 wilthlem2 26797 wilthlem3 26798 dchrelbas3 26965 dchrzrh1 26971 dchrmulcl 26976 dchrn0 26977 dchrinvcl 26980 dchrfi 26982 dchrabs 26987 sumdchr2 26997 rpvmasum2 27239 qrng1 27349 psgnid 32514 cnmsgn0g 32563 altgnsg 32566 xrge0slmod 32721 fermltlchr 32740 znfermltl 32741 iistmd 33168 xrge0iifmhm 33205 cnsrexpcl 42209 rngunsnply 42217 proot1ex 42245 amgmwlem 47937 amgmlemALT 47938 |
Copyright terms: Public domain | W3C validator |