| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negcncf | Structured version Visualization version GIF version | ||
| Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.) Avoid ax-mulf 11081. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| negcncf.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
| Ref | Expression |
|---|---|
| negcncf | ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12105 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 2 | ssel2 3924 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℂ) | |
| 3 | ovmpot 7502 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥) = (-1 · 𝑥)) | |
| 4 | 3 | eqcomd 2737 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-1 · 𝑥) = (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥)) |
| 5 | 1, 2, 4 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (-1 · 𝑥) = (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥)) |
| 6 | 2 | mulm1d 11564 | . . . . 5 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (-1 · 𝑥) = -𝑥) |
| 7 | 5, 6 | eqtr3d 2768 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴) → (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥) = -𝑥) |
| 8 | 7 | mpteq2dva 5179 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝑥 ∈ 𝐴 ↦ (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥)) = (𝑥 ∈ 𝐴 ↦ -𝑥)) |
| 9 | negcncf.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) | |
| 10 | 8, 9 | eqtr4di 2784 | . 2 ⊢ (𝐴 ⊆ ℂ → (𝑥 ∈ 𝐴 ↦ (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥)) = 𝐹) |
| 11 | eqid 2731 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 12 | 11 | mpomulcn 24780 | . . . 4 ⊢ (𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 14 | ssid 3952 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 15 | cncfmptc 24827 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ -1) ∈ (𝐴–cn→ℂ)) | |
| 16 | 1, 14, 15 | mp3an13 1454 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝑥 ∈ 𝐴 ↦ -1) ∈ (𝐴–cn→ℂ)) |
| 17 | cncfmptid 24828 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (𝐴–cn→ℂ)) | |
| 18 | 14, 17 | mpan2 691 | . . 3 ⊢ (𝐴 ⊆ ℂ → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (𝐴–cn→ℂ)) |
| 19 | 11, 13, 16, 18 | cncfmpt2f 24830 | . 2 ⊢ (𝐴 ⊆ ℂ → (𝑥 ∈ 𝐴 ↦ (-1(𝑎 ∈ ℂ, 𝑏 ∈ ℂ ↦ (𝑎 · 𝑏))𝑥)) ∈ (𝐴–cn→ℂ)) |
| 20 | 10, 19 | eqeltrrd 2832 | 1 ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ℂcc 10999 1c1 11002 · cmul 11006 -cneg 11340 TopOpenctopn 17320 ℂfldccnfld 21286 Cn ccn 23134 ×t ctx 23470 –cn→ccncf 24791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cn 23137 df-cnp 23138 df-tx 23472 df-hmeo 23665 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 |
| This theorem is referenced by: negfcncf 24839 lhop2 25942 etransclem18 46290 etransclem46 46318 |
| Copyright terms: Public domain | W3C validator |