| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cndrng | Structured version Visualization version GIF version | ||
| Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11155. (Revised by GG, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| cndrng | ⊢ ℂfld ∈ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21275 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 3 | mpocnfldmul 21278 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
| 5 | cnfld0 21311 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
| 7 | cnfld1 21312 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → 1 = (1r‘ℂfld)) |
| 9 | cnring 21309 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
| 11 | ovmpot 7553 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) | |
| 12 | 11 | ad2ant2r 747 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
| 13 | mulne0 11827 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
| 14 | 12, 13 | eqnetrd 2993 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ≠ 0) |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ≠ 0) |
| 16 | ax-1ne0 11144 | . . . 4 ⊢ 1 ≠ 0 | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (⊤ → 1 ≠ 0) |
| 18 | reccl 11851 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ) |
| 20 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℂ) | |
| 21 | ovmpot 7553 | . . . . . 6 ⊢ (((1 / 𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = ((1 / 𝑥) · 𝑥)) | |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = ((1 / 𝑥) · 𝑥)) |
| 23 | recid2 11859 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) · 𝑥) = 1) | |
| 24 | 22, 23 | eqtrd 2765 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) |
| 26 | 2, 4, 6, 8, 10, 15, 17, 19, 25 | isdrngd 20681 | . 2 ⊢ (⊤ → ℂfld ∈ DivRing) |
| 27 | 26 | mptru 1547 | 1 ⊢ ℂfld ∈ DivRing |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 Basecbs 17186 .rcmulr 17228 0gc0g 17409 1rcur 20097 Ringcrg 20149 DivRingcdr 20645 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20647 df-cnfld 21272 |
| This theorem is referenced by: cnflddiv 21319 cnflddivOLD 21320 cnfldinv 21321 cnsubdrglem 21342 cnmgpabl 21352 cnmsubglem 21354 gzrngunit 21357 zringunit 21383 zringmpg 21388 expghm 21392 psgninv 21498 zrhpsgnmhm 21500 cnstrcvs 25048 cnrlvec 25051 cnrnvc 25065 amgmlem 26907 dchrghm 27174 dchrabs 27178 sum2dchr 27192 lgseisenlem4 27296 1fldgenq 33279 cnfldfld 33321 xrge0slmod 33326 ccfldextrr 33649 constrextdg2lem 33745 constrextdg2 33746 constrext2chnlem 33747 constrcon 33771 2sqr3minply 33777 cos9thpiminply 33785 cnrrext 34007 proot1ex 43192 amgmwlem 49795 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |