MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cndrng Structured version   Visualization version   GIF version

Theorem cndrng 21411
Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11235. (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
cndrng fld ∈ DivRing

Proof of Theorem cndrng
Dummy variables 𝑥 𝑦 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 21368 . . . 4 ℂ = (Base‘ℂfld)
21a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
3 mpocnfldmul 21371 . . . 4 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
43a1i 11 . . 3 (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld))
5 cnfld0 21405 . . . 4 0 = (0g‘ℂfld)
65a1i 11 . . 3 (⊤ → 0 = (0g‘ℂfld))
7 cnfld1 21406 . . . 4 1 = (1r‘ℂfld)
87a1i 11 . . 3 (⊤ → 1 = (1r‘ℂfld))
9 cnring 21403 . . . 4 fld ∈ Ring
109a1i 11 . . 3 (⊤ → ℂfld ∈ Ring)
11 ovmpot 7594 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦))
1211ad2ant2r 747 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦))
13 mulne0 11905 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0)
1412, 13eqnetrd 3008 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ≠ 0)
15143adant1 1131 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ≠ 0)
16 ax-1ne0 11224 . . . 4 1 ≠ 0
1716a1i 11 . . 3 (⊤ → 1 ≠ 0)
18 reccl 11929 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1918adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
20 simpl 482 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℂ)
21 ovmpot 7594 . . . . . 6 (((1 / 𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = ((1 / 𝑥) · 𝑥))
2218, 20, 21syl2anc 584 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = ((1 / 𝑥) · 𝑥))
23 recid2 11937 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) · 𝑥) = 1)
2422, 23eqtrd 2777 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)
2524adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1)
262, 4, 6, 8, 10, 15, 17, 19, 25isdrngd 20765 . 2 (⊤ → ℂfld ∈ DivRing)
2726mptru 1547 1 fld ∈ DivRing
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  Basecbs 17247  .rcmulr 17298  0gc0g 17484  1rcur 20178  Ringcrg 20230  DivRingcdr 20729  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-cnfld 21365
This theorem is referenced by:  cnflddiv  21413  cnflddivOLD  21414  cnfldinv  21415  cnsubdrglem  21436  cnmgpabl  21446  cnmsubglem  21448  gzrngunit  21451  zringunit  21477  zringmpg  21482  expghm  21486  psgninv  21600  zrhpsgnmhm  21602  cnstrcvs  25174  cnrlvec  25177  cnrnvc  25192  amgmlem  27033  dchrghm  27300  dchrabs  27304  sum2dchr  27318  lgseisenlem4  27422  1fldgenq  33324  cnfldfld  33371  xrge0slmod  33376  ccfldextrr  33699  constrextdg2lem  33789  constrextdg2  33790  2sqr3minply  33791  cnrrext  34011  proot1ex  43208  amgmwlem  49321  amgmlemALT  49322
  Copyright terms: Public domain W3C validator