Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cndrng | Structured version Visualization version GIF version |
Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
cndrng | ⊢ ℂfld ∈ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20601 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
3 | cnfldmul 20603 | . . . 4 ⊢ · = (.r‘ℂfld) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
5 | cnfld0 20622 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
7 | cnfld1 20623 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → 1 = (1r‘ℂfld)) |
9 | cnring 20620 | . . . 4 ⊢ ℂfld ∈ Ring | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
11 | mulne0 11617 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
12 | 11 | 3adant1 1129 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) |
13 | ax-1ne0 10940 | . . . 4 ⊢ 1 ≠ 0 | |
14 | 13 | a1i 11 | . . 3 ⊢ (⊤ → 1 ≠ 0) |
15 | reccl 11640 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ) | |
16 | 15 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ) |
17 | recne0 11646 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ≠ 0) | |
18 | 17 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ≠ 0) |
19 | recid2 11648 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) · 𝑥) = 1) | |
20 | 19 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · 𝑥) = 1) |
21 | 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 | isdrngd 20016 | . 2 ⊢ (⊤ → ℂfld ∈ DivRing) |
22 | 21 | mptru 1546 | 1 ⊢ ℂfld ∈ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 Basecbs 16912 .rcmulr 16963 0gc0g 17150 1rcur 19737 Ringcrg 19783 DivRingcdr 19991 ℂfldccnfld 20597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-cnfld 20598 |
This theorem is referenced by: cnflddiv 20628 cnfldinv 20629 cnsubdrglem 20649 cnmgpabl 20659 cnmsubglem 20661 gzrngunit 20664 zringunit 20688 zringmpg 20693 expghm 20697 psgninv 20787 zrhpsgnmhm 20789 cnstrcvs 24304 cnrlvec 24307 cnrnvc 24322 amgmlem 26139 dchrghm 26404 dchrabs 26408 sum2dchr 26422 lgseisenlem4 26526 xrge0slmod 31548 ccfldextrr 31723 cnrrext 31960 proot1ex 41026 amgmwlem 46506 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |