| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cndrng | Structured version Visualization version GIF version | ||
| Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11124. (Revised by GG, 30-Apr-2025.) |
| Ref | Expression |
|---|---|
| cndrng | ⊢ ℂfld ∈ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21244 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 3 | mpocnfldmul 21247 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)) |
| 5 | cnfld0 21280 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
| 7 | cnfld1 21281 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → 1 = (1r‘ℂfld)) |
| 9 | cnring 21278 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
| 11 | ovmpot 7530 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) | |
| 12 | 11 | ad2ant2r 747 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
| 13 | mulne0 11796 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
| 14 | 12, 13 | eqnetrd 2992 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ≠ 0) |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ≠ 0) |
| 16 | ax-1ne0 11113 | . . . 4 ⊢ 1 ≠ 0 | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (⊤ → 1 ≠ 0) |
| 18 | reccl 11820 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ) |
| 20 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℂ) | |
| 21 | ovmpot 7530 | . . . . . 6 ⊢ (((1 / 𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = ((1 / 𝑥) · 𝑥)) | |
| 22 | 18, 20, 21 | syl2anc 584 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = ((1 / 𝑥) · 𝑥)) |
| 23 | recid2 11828 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥) · 𝑥) = 1) | |
| 24 | 22, 23 | eqtrd 2764 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((1 / 𝑥)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 1) |
| 26 | 2, 4, 6, 8, 10, 15, 17, 19, 25 | isdrngd 20650 | . 2 ⊢ (⊤ → ℂfld ∈ DivRing) |
| 27 | 26 | mptru 1547 | 1 ⊢ ℂfld ∈ DivRing |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 0cc0 11044 1c1 11045 · cmul 11049 / cdiv 11811 Basecbs 17155 .rcmulr 17197 0gc0g 17378 1rcur 20066 Ringcrg 20118 DivRingcdr 20614 ℂfldccnfld 21240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-drng 20616 df-cnfld 21241 |
| This theorem is referenced by: cnflddiv 21288 cnflddivOLD 21289 cnfldinv 21290 cnsubdrglem 21311 cnmgpabl 21321 cnmsubglem 21323 gzrngunit 21326 zringunit 21352 zringmpg 21357 expghm 21361 psgninv 21467 zrhpsgnmhm 21469 cnstrcvs 25017 cnrlvec 25020 cnrnvc 25034 amgmlem 26876 dchrghm 27143 dchrabs 27147 sum2dchr 27161 lgseisenlem4 27265 1fldgenq 33245 cnfldfld 33287 xrge0slmod 33292 ccfldextrr 33615 constrextdg2lem 33711 constrextdg2 33712 constrext2chnlem 33713 constrcon 33737 2sqr3minply 33743 cos9thpiminply 33751 cnrrext 33973 proot1ex 43158 amgmwlem 49764 amgmlemALT 49765 |
| Copyright terms: Public domain | W3C validator |