MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmvth Structured version   Visualization version   GIF version

Theorem cmvth 26029
Description: Cauchy's Mean Value Theorem. If 𝐹, 𝐺 are real continuous functions on [𝐴, 𝐵] differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that 𝐹' (𝑥) / 𝐺' (𝑥) = (𝐹(𝐴) − 𝐹(𝐵)) / (𝐺(𝐴) − 𝐺(𝐵)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.) Avoid ax-mulf 11235. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
cmvth.a (𝜑𝐴 ∈ ℝ)
cmvth.b (𝜑𝐵 ∈ ℝ)
cmvth.lt (𝜑𝐴 < 𝐵)
cmvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.g (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.df (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
cmvth.dg (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
Assertion
Ref Expression
cmvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem cmvth
Dummy variables 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 cmvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 cmvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 eqid 2737 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54subcn 24888 . . . 4 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6 cmvth.f . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
7 cncff 24919 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
86, 7syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
91rexrd 11311 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ*)
102rexrd 11311 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
111, 2, 3ltled 11409 . . . . . . . . . . . . . . 15 (𝜑𝐴𝐵)
12 ubicc2 13505 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
139, 10, 11, 12syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (𝐴[,]𝐵))
148, 13ffvelcdmd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐵) ∈ ℝ)
15 lbicc2 13504 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
169, 10, 11, 15syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (𝐴[,]𝐵))
178, 16ffvelcdmd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐴) ∈ ℝ)
1814, 17resubcld 11691 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
1918recnd 11289 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
2019adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
21 cmvth.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
22 cncff 24919 . . . . . . . . . . . . 13 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
2423ffvelcdmda 7104 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℝ)
2524recnd 11289 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℂ)
26 ovmpot 7594 . . . . . . . . . 10 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))
2720, 25, 26syl2anc 584 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))
2827eqeq2d 2748 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑤 = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)) ↔ 𝑤 = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))))
2928pm5.32da 579 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧))) ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))))
3029opabbidv 5209 . . . . . 6 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))})
31 df-mpt 5226 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))}
3230, 31eqtr4di 2795 . . . . 5 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)))} = (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))))
33 df-mpt 5226 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)))}
344mpomulcn 24891 . . . . . . 7 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
351, 2iccssred 13474 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
36 ax-resscn 11212 . . . . . . . . 9 ℝ ⊆ ℂ
3735, 36sstrdi 3996 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
3836a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
39 cncfmptc 24938 . . . . . . . 8 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4018, 37, 38, 39syl3anc 1373 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4123feqmptd 6977 . . . . . . . 8 (𝜑𝐺 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)))
4241, 21eqeltrrd 2842 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
43 simpl 482 . . . . . . . . . 10 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
4443recnd 11289 . . . . . . . . 9 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
45 simpr 484 . . . . . . . . . 10 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (𝐺𝑧) ∈ ℝ)
4645recnd 11289 . . . . . . . . 9 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (𝐺𝑧) ∈ ℂ)
4726eqcomd 2743 . . . . . . . . 9 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)))
4844, 46, 47syl2anc 584 . . . . . . . 8 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)))
49 remulcl 11240 . . . . . . . 8 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ)
5048, 49eqeltrrd 2842 . . . . . . 7 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)) ∈ ℝ)
514, 34, 40, 42, 36, 50cncfmpt2ss 24942 . . . . . 6 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
5233, 51eqeltrrid 2846 . . . . 5 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐹𝐵) − (𝐹𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐺𝑧)))} ∈ ((𝐴[,]𝐵)–cn→ℝ))
5332, 52eqeltrrd 2842 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
5423, 13ffvelcdmd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐵) ∈ ℝ)
5523, 16ffvelcdmd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐴) ∈ ℝ)
5654, 55resubcld 11691 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
5756adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
5857recnd 11289 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
598ffvelcdmda 7104 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℝ)
6059recnd 11289 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℂ)
61 ovmpot 7594 . . . . . . . . . 10 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))
6258, 60, 61syl2anc 584 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))
6362eqeq2d 2748 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑤 = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)) ↔ 𝑤 = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))
6463pm5.32da 579 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧))) ↔ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))
6564opabbidv 5209 . . . . . 6 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))})
66 df-mpt 5226 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))}
6765, 66eqtr4di 2795 . . . . 5 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)))} = (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))
68 df-mpt 5226 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧))) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)))}
69 cncfmptc 24938 . . . . . . . 8 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
7056, 37, 38, 69syl3anc 1373 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
718feqmptd 6977 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)))
7271, 6eqeltrrd 2842 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
73 simpl 482 . . . . . . . . . 10 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
7473recnd 11289 . . . . . . . . 9 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
75 simpr 484 . . . . . . . . . 10 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
7675recnd 11289 . . . . . . . . 9 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
7761eqcomd 2743 . . . . . . . . 9 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ ∧ (𝐹𝑧) ∈ ℂ) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)))
7874, 76, 77syl2anc 584 . . . . . . . 8 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)))
79 remulcl 11240 . . . . . . . 8 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
8078, 79eqeltrrd 2842 . . . . . . 7 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)) ∈ ℝ)
814, 34, 70, 72, 36, 80cncfmpt2ss 24942 . . . . . 6 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
8268, 81eqeltrrid 2846 . . . . 5 (𝜑 → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (((𝐺𝐵) − (𝐺𝐴))(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝐹𝑧)))} ∈ ((𝐴[,]𝐵)–cn→ℝ))
8367, 82eqeltrrd 2842 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
84 resubcl 11573 . . . 4 (((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ ∧ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℝ)
854, 5, 53, 83, 36, 84cncfmpt2ss 24942 . . 3 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
8620, 25mulcld 11281 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
8757, 59remulcld 11291 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
8887recnd 11289 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
8986, 88subcld 11620 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℂ)
90 tgioo4 24826 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
91 iccntr 24843 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
921, 2, 91syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
9338, 35, 89, 90, 4, 92dvmptntr 26009 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))))
94 reelprrecn 11247 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
9594a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
96 ioossicc 13473 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
9796sseli 3979 . . . . . . . 8 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
9897, 86sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
99 ovexd 7466 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V)
10097, 25sylan2 593 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
101 fvexd 6921 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ V)
10241oveq2d 7447 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))))
103 dvf 25942 . . . . . . . . . . 11 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
104 cmvth.dg . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
105104feq2d 6722 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
106103, 105mpbii 233 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
107106feqmptd 6977 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
10838, 35, 25, 90, 4, 92dvmptntr 26009 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))))
109102, 107, 1083eqtr3rd 2786 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
11095, 100, 101, 109, 19dvmptcmul 26002 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧))))
11197, 88sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
112 ovexd 7466 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V)
11397, 60sylan2 593 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
114 fvexd 6921 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ V)
11571oveq2d 7447 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))))
116 dvf 25942 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
117 cmvth.df . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
118117feq2d 6722 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
119116, 118mpbii 233 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
120119feqmptd 6977 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
12138, 35, 60, 90, 4, 92dvmptntr 26009 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))))
122115, 120, 1213eqtr3rd 2786 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
12356recnd 11289 . . . . . . . 8 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
12495, 113, 114, 122, 123dvmptcmul 26002 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
12595, 98, 99, 110, 111, 112, 124dvmptsub 26005 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
12693, 125eqtrd 2777 . . . . 5 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
127126dmeqd 5916 . . . 4 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
128 ovex 7464 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) ∈ V
129 eqid 2737 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
130128, 129dmmpti 6712 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝐴(,)𝐵)
131127, 130eqtrdi 2793 . . 3 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝐴(,)𝐵))
13214recnd 11289 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ ℂ)
13355recnd 11289 . . . . . . . 8 (𝜑 → (𝐺𝐴) ∈ ℂ)
134132, 133mulcld 11281 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐴)) ∈ ℂ)
13517recnd 11289 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ ℂ)
13654recnd 11289 . . . . . . . 8 (𝜑 → (𝐺𝐵) ∈ ℂ)
137135, 136mulcld 11281 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
138135, 133mulcld 11281 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐴)) ∈ ℂ)
139134, 137, 138nnncan2d 11655 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
140132, 136mulcld 11281 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐵)) ∈ ℂ)
141140, 137, 134nnncan1d 11654 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
142139, 141eqtr4d 2780 . . . . 5 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
143132, 135, 133subdird 11720 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))))
144123, 135mulcomd 11282 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))))
145135, 136, 133subdid 11719 . . . . . . 7 (𝜑 → ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
146144, 145eqtrd 2777 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
147143, 146oveq12d 7449 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))))
148132, 135, 136subdird 11720 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))))
149123, 132mulcomd 11282 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))))
150132, 136, 133subdid 11719 . . . . . . 7 (𝜑 → ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
151149, 150eqtrd 2777 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
152148, 151oveq12d 7449 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
153142, 147, 1523eqtr4d 2787 . . . 4 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
154 fveq2 6906 . . . . . . . 8 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
155154oveq2d 7447 . . . . . . 7 (𝑧 = 𝐴 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)))
156 fveq2 6906 . . . . . . . 8 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
157156oveq2d 7447 . . . . . . 7 (𝑧 = 𝐴 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)))
158155, 157oveq12d 7449 . . . . . 6 (𝑧 = 𝐴 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
159 eqid 2737 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))
160 ovex 7464 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ V
161158, 159, 160fvmpt3i 7021 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
16216, 161syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
163 fveq2 6906 . . . . . . . 8 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
164163oveq2d 7447 . . . . . . 7 (𝑧 = 𝐵 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)))
165 fveq2 6906 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝑧) = (𝐹𝐵))
166165oveq2d 7447 . . . . . . 7 (𝑧 = 𝐵 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)))
167164, 166oveq12d 7449 . . . . . 6 (𝑧 = 𝐵 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
168167, 159, 160fvmpt3i 7021 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
16913, 168syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
170153, 162, 1693eqtr4d 2787 . . 3 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵))
1711, 2, 3, 85, 131, 170rolle 26028 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0)
172126fveq1d 6908 . . . . . 6 (𝜑 → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥))
173 fveq2 6906 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑥))
174173oveq2d 7447 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)))
175 fveq2 6906 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑥))
176175oveq2d 7447 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
177174, 176oveq12d 7449 . . . . . . 7 (𝑧 = 𝑥 → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
178177, 129, 128fvmpt3i 7021 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
179172, 178sylan9eq 2797 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
180179eqeq1d 2739 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0))
18119adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
182106ffvelcdmda 7104 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑥) ∈ ℂ)
183181, 182mulcld 11281 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) ∈ ℂ)
184123adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
185119ffvelcdmda 7104 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
186184, 185mulcld 11281 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
187183, 186subeq0ad 11630 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
188180, 187bitrd 279 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
189188rexbidva 3177 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
190171, 189mpbid 232 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  {cpr 4628   class class class wbr 5143  {copab 5205  cmpt 5225  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153  cr 11154  0cc0 11155   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492  (,)cioo 13387  [,]cicc 13390  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  intcnt 23025  cnccncf 24902   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  mvth  26031  lhop1lem  26052
  Copyright terms: Public domain W3C validator