| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | plyf 26238 | . . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | 
| 2 | 1 | adantl 481 | . . . . 5
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ) | 
| 3 | 2 | feqmptd 6976 | . . . 4
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹‘𝑎))) | 
| 4 |  | simplr 768 | . . . . . 6
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆)) | 
| 5 |  | dgrcl 26273 | . . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) | 
| 6 | 5 | adantl 481 | . . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈
ℕ0) | 
| 7 | 6 | nn0zd 12641 | . . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℤ) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (deg‘𝐹) ∈
ℤ) | 
| 9 |  | uzid 12894 | . . . . . . 7
⊢
((deg‘𝐹)
∈ ℤ → (deg‘𝐹) ∈
(ℤ≥‘(deg‘𝐹))) | 
| 10 |  | peano2uz 12944 | . . . . . . 7
⊢
((deg‘𝐹)
∈ (ℤ≥‘(deg‘𝐹)) → ((deg‘𝐹) + 1) ∈
(ℤ≥‘(deg‘𝐹))) | 
| 11 | 8, 9, 10 | 3syl 18 | . . . . . 6
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → ((deg‘𝐹) + 1) ∈
(ℤ≥‘(deg‘𝐹))) | 
| 12 |  | simpr 484 | . . . . . 6
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ) | 
| 13 |  | eqid 2736 | . . . . . . 7
⊢
(coeff‘𝐹) =
(coeff‘𝐹) | 
| 14 |  | eqid 2736 | . . . . . . 7
⊢
(deg‘𝐹) =
(deg‘𝐹) | 
| 15 | 13, 14 | coeid3 26280 | . . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ ((deg‘𝐹) + 1) ∈
(ℤ≥‘(deg‘𝐹)) ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎↑𝑏))) | 
| 16 | 4, 11, 12, 15 | syl3anc 1372 | . . . . 5
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎↑𝑏))) | 
| 17 | 16 | mpteq2dva 5241 | . . . 4
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ (𝐹‘𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎↑𝑏)))) | 
| 18 | 3, 17 | eqtrd 2776 | . . 3
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎↑𝑏)))) | 
| 19 | 6 | nn0cnd 12591 | . . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℂ) | 
| 20 |  | ax-1cn 11214 | . . . . . . . 8
⊢ 1 ∈
ℂ | 
| 21 |  | pncan 11515 | . . . . . . . 8
⊢
(((deg‘𝐹)
∈ ℂ ∧ 1 ∈ ℂ) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹)) | 
| 22 | 19, 20, 21 | sylancl 586 | . . . . . . 7
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹)) | 
| 23 | 22 | eqcomd 2742 | . . . . . 6
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) = (((deg‘𝐹) + 1) − 1)) | 
| 24 | 23 | oveq2d 7448 | . . . . 5
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (0...(deg‘𝐹)) = (0...(((deg‘𝐹) + 1) − 1))) | 
| 25 | 24 | sumeq1d 15737 | . . . 4
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)) = Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) | 
| 26 | 25 | mpteq2dv 5243 | . . 3
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)))) | 
| 27 | 13 | coef3 26272 | . . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) | 
| 28 | 27 | adantl 481 | . . 3
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ) | 
| 29 |  | oveq1 7439 | . . . . 5
⊢ (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1)) | 
| 30 |  | fvoveq1 7455 | . . . . 5
⊢ (𝑐 = 𝑏 → ((coeff‘𝐹)‘(𝑐 + 1)) = ((coeff‘𝐹)‘(𝑏 + 1))) | 
| 31 | 29, 30 | oveq12d 7450 | . . . 4
⊢ (𝑐 = 𝑏 → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1)))) | 
| 32 | 31 | cbvmptv 5254 | . . 3
⊢ (𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) ·
((coeff‘𝐹)‘(𝑏 + 1)))) | 
| 33 |  | peano2nn0 12568 | . . . 4
⊢
((deg‘𝐹)
∈ ℕ0 → ((deg‘𝐹) + 1) ∈
ℕ0) | 
| 34 | 6, 33 | syl 17 | . . 3
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((deg‘𝐹) + 1) ∈
ℕ0) | 
| 35 | 18, 26, 28, 32, 34 | dvply1 26326 | . 2
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)))) | 
| 36 |  | cnfldbas 21369 | . . . . 5
⊢ ℂ =
(Base‘ℂfld) | 
| 37 | 36 | subrgss 20573 | . . . 4
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ⊆ ℂ) | 
| 38 | 37 | adantr 480 | . . 3
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝑆 ⊆ ℂ) | 
| 39 |  | elfznn0 13661 | . . . 4
⊢ (𝑏 ∈ (0...(deg‘𝐹)) → 𝑏 ∈ ℕ0) | 
| 40 |  | simpll 766 | . . . . . . 7
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈
(SubRing‘ℂfld)) | 
| 41 |  | zsssubrg 21444 | . . . . . . . . 9
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ℤ ⊆ 𝑆) | 
| 42 | 41 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ℤ
⊆ 𝑆) | 
| 43 |  | peano2nn0 12568 | . . . . . . . . . 10
⊢ (𝑐 ∈ ℕ0
→ (𝑐 + 1) ∈
ℕ0) | 
| 44 | 43 | adantl 481 | . . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℕ0) | 
| 45 | 44 | nn0zd 12641 | . . . . . . . 8
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℤ) | 
| 46 | 42, 45 | sseldd 3983 | . . . . . . 7
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆) | 
| 47 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) | 
| 48 |  | subrgsubg 20578 | . . . . . . . . . . 11
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ∈
(SubGrp‘ℂfld)) | 
| 49 |  | cnfld0 21406 | . . . . . . . . . . . 12
⊢ 0 =
(0g‘ℂfld) | 
| 50 | 49 | subg0cl 19153 | . . . . . . . . . . 11
⊢ (𝑆 ∈
(SubGrp‘ℂfld) → 0 ∈ 𝑆) | 
| 51 | 48, 50 | syl 17 | . . . . . . . . . 10
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 0 ∈ 𝑆) | 
| 52 | 51 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 0 ∈
𝑆) | 
| 53 | 13 | coef2 26271 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝐹):ℕ0⟶𝑆) | 
| 54 | 47, 52, 53 | syl2anc 584 | . . . . . . . 8
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) →
(coeff‘𝐹):ℕ0⟶𝑆) | 
| 55 | 54, 44 | ffvelcdmd 7104 | . . . . . . 7
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) →
((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) | 
| 56 |  | mpocnfldmul 21372 | . . . . . . . . 9
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) =
(.r‘ℂfld) | 
| 57 | 56 | subrgmcl 20585 | . . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆) | 
| 58 | 37 | a1d 25 | . . . . . . . . . . . . . 14
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → 𝑆 ⊆ ℂ)) | 
| 59 |  | ssel 3976 | . . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ ℂ → ((𝑐 + 1) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ)) | 
| 60 | 59 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑆 ⊆ ℂ → ((𝑐 + 1) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ))) | 
| 61 | 58, 60 | syld 47 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((𝑐 + 1) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ))) | 
| 62 | 61 | com23 86 | . . . . . . . . . . . 12
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ((𝑐 + 1) ∈ 𝑆 → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ))) | 
| 63 | 62 | 3imp 1110 | . . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → (𝑐 + 1) ∈ ℂ) | 
| 64 | 37 | a1d 25 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ((𝑐 + 1) ∈ 𝑆 → 𝑆 ⊆ ℂ)) | 
| 65 |  | ssel 3976 | . . . . . . . . . . . . . 14
⊢ (𝑆 ⊆ ℂ →
(((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ)) | 
| 66 | 65 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑆 ⊆ ℂ → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ))) | 
| 67 | 64, 66 | syld 47 | . . . . . . . . . . . 12
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ((𝑐 + 1) ∈ 𝑆 → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ))) | 
| 68 | 67 | 3imp 1110 | . . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ) | 
| 69 | 63, 68 | jca 511 | . . . . . . . . . 10
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1) ∈ ℂ ∧
((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ)) | 
| 70 |  | ovmpot 7595 | . . . . . . . . . 10
⊢ (((𝑐 + 1) ∈ ℂ ∧
((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))) | 
| 71 | 69, 70 | syl 17 | . . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))) | 
| 72 | 71 | eleq1d 2825 | . . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → (((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆 ↔ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)) | 
| 73 | 57, 72 | mpbid 232 | . . . . . . 7
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆) | 
| 74 | 40, 46, 55, 73 | syl3anc 1372 | . . . . . 6
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆) | 
| 75 | 74 | fmpttd 7134 | . . . . 5
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1)))):ℕ0⟶𝑆) | 
| 76 | 75 | ffvelcdmda 7103 | . . . 4
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆) | 
| 77 | 39, 76 | sylan2 593 | . . 3
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ (0...(deg‘𝐹))) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆) | 
| 78 | 38, 6, 77 | elplyd 26242 | . 2
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) ·
((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) ∈ (Poly‘𝑆)) | 
| 79 | 35, 78 | eqeltrd 2840 | 1
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |