MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply2g Structured version   Visualization version   GIF version

Theorem dvply2g 26249
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) Avoid ax-mulf 11214. (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2g
Dummy variables 𝑎 𝑏 𝑐 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyf 26160 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
21adantl 481 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
32feqmptd 6952 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
4 simplr 768 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
5 dgrcl 26195 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
65adantl 481 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℕ0)
76nn0zd 12619 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℤ)
87adantr 480 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (deg‘𝐹) ∈ ℤ)
9 uzid 12872 . . . . . . 7 ((deg‘𝐹) ∈ ℤ → (deg‘𝐹) ∈ (ℤ‘(deg‘𝐹)))
10 peano2uz 12922 . . . . . . 7 ((deg‘𝐹) ∈ (ℤ‘(deg‘𝐹)) → ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)))
118, 9, 103syl 18 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)))
12 simpr 484 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
13 eqid 2736 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
14 eqid 2736 . . . . . . 7 (deg‘𝐹) = (deg‘𝐹)
1513, 14coeid3 26202 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏)))
164, 11, 12, 15syl3anc 1373 . . . . 5 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏)))
1716mpteq2dva 5219 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏))))
183, 17eqtrd 2771 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏))))
196nn0cnd 12569 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℂ)
20 ax-1cn 11192 . . . . . . . 8 1 ∈ ℂ
21 pncan 11493 . . . . . . . 8 (((deg‘𝐹) ∈ ℂ ∧ 1 ∈ ℂ) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹))
2219, 20, 21sylancl 586 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹))
2322eqcomd 2742 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) = (((deg‘𝐹) + 1) − 1))
2423oveq2d 7426 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (0...(deg‘𝐹)) = (0...(((deg‘𝐹) + 1) − 1)))
2524sumeq1d 15721 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
2625mpteq2dv 5220 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
2713coef3 26194 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
2827adantl 481 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
29 oveq1 7417 . . . . 5 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
30 fvoveq1 7433 . . . . 5 (𝑐 = 𝑏 → ((coeff‘𝐹)‘(𝑐 + 1)) = ((coeff‘𝐹)‘(𝑏 + 1)))
3129, 30oveq12d 7428 . . . 4 (𝑐 = 𝑏 → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1))))
3231cbvmptv 5230 . . 3 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1))))
33 peano2nn0 12546 . . . 4 ((deg‘𝐹) ∈ ℕ0 → ((deg‘𝐹) + 1) ∈ ℕ0)
346, 33syl 17 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((deg‘𝐹) + 1) ∈ ℕ0)
3518, 26, 28, 32, 34dvply1 26248 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
36 cnfldbas 21324 . . . . 5 ℂ = (Base‘ℂfld)
3736subrgss 20537 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
3837adantr 480 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝑆 ⊆ ℂ)
39 elfznn0 13642 . . . 4 (𝑏 ∈ (0...(deg‘𝐹)) → 𝑏 ∈ ℕ0)
40 simpll 766 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
41 zsssubrg 21398 . . . . . . . . 9 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
4241ad2antrr 726 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
43 peano2nn0 12546 . . . . . . . . . 10 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
4443adantl 481 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
4544nn0zd 12619 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
4642, 45sseldd 3964 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
47 simplr 768 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
48 subrgsubg 20542 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
49 cnfld0 21360 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
5049subg0cl 19122 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
5148, 50syl 17 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
5251ad2antrr 726 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
5313coef2 26193 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝐹):ℕ0𝑆)
5447, 52, 53syl2anc 584 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (coeff‘𝐹):ℕ0𝑆)
5554, 44ffvelcdmd 7080 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆)
56 mpocnfldmul 21327 . . . . . . . . 9 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
5756subrgmcl 20549 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
5837a1d 25 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubRing‘ℂfld) → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆𝑆 ⊆ ℂ))
59 ssel 3957 . . . . . . . . . . . . . . 15 (𝑆 ⊆ ℂ → ((𝑐 + 1) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ))
6059a1i 11 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ⊆ ℂ → ((𝑐 + 1) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ)))
6158, 60syld 47 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((𝑐 + 1) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ)))
6261com23 86 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → ((𝑐 + 1) ∈ 𝑆 → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → (𝑐 + 1) ∈ ℂ)))
63623imp 1110 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → (𝑐 + 1) ∈ ℂ)
6437a1d 25 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → ((𝑐 + 1) ∈ 𝑆𝑆 ⊆ ℂ))
65 ssel 3957 . . . . . . . . . . . . . 14 (𝑆 ⊆ ℂ → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ))
6665a1i 11 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ⊆ ℂ → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ)))
6764, 66syld 47 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → ((𝑐 + 1) ∈ 𝑆 → (((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆 → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ)))
68673imp 1110 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ)
6963, 68jca 511 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1) ∈ ℂ ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ))
70 ovmpot 7573 . . . . . . . . . 10 (((𝑐 + 1) ∈ ℂ ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))
7169, 70syl 17 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))
7271eleq1d 2820 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → (((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆 ↔ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆))
7357, 72mpbid 232 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
7440, 46, 55, 73syl3anc 1373 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
7574fmpttd 7110 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))):ℕ0𝑆)
7675ffvelcdmda 7079 . . . 4 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
7739, 76sylan2 593 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ (0...(deg‘𝐹))) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
7838, 6, 77elplyd 26164 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
7935, 78eqeltrd 2835 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  cexp 14084  Σcsu 15707  SubGrpcsubg 19108  SubRingcsubrg 20534  fldccnfld 21320   D cdv 25821  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-0p 25628  df-limc 25824  df-dv 25825  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  dvply2  26251  dvnply2  26252
  Copyright terms: Public domain W3C validator