Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddssw2 | Structured version Visualization version GIF version |
Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
Ref | Expression |
---|---|
paddssw.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddssw.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddssw2 | ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddssw.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | paddssw.p | . . . . . 6 ⊢ + = (+𝑃‘𝐾) | |
3 | 1, 2 | sspadd1 37871 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) |
4 | 3 | 3adant3r3 1184 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌)) |
5 | sstr 3934 | . . . 4 ⊢ ((𝑋 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋 ⊆ 𝑍) | |
6 | 4, 5 | sylan 581 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋 ⊆ 𝑍) |
7 | 6 | ex 414 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → 𝑋 ⊆ 𝑍)) |
8 | simpl 484 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝐾 ∈ 𝐵) | |
9 | simpr2 1195 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑌 ⊆ 𝐴) | |
10 | simpr1 1194 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ 𝐴) | |
11 | 1, 2 | sspadd2 37872 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → 𝑌 ⊆ (𝑋 + 𝑌)) |
12 | 8, 9, 10, 11 | syl3anc 1371 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑌 ⊆ (𝑋 + 𝑌)) |
13 | sstr 3934 | . . . 4 ⊢ ((𝑌 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌 ⊆ 𝑍) | |
14 | 12, 13 | sylan 581 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌 ⊆ 𝑍) |
15 | 14 | ex 414 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → 𝑌 ⊆ 𝑍)) |
16 | 7, 15 | jcad 514 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ‘cfv 6458 (class class class)co 7307 Atomscatm 37319 +𝑃cpadd 37851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-padd 37852 |
This theorem is referenced by: paddss 37901 |
Copyright terms: Public domain | W3C validator |