Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssw2 Structured version   Visualization version   GIF version

Theorem paddssw2 39845
Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.)
Hypotheses
Ref Expression
paddssw.a 𝐴 = (Atoms‘𝐾)
paddssw.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddssw2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))

Proof of Theorem paddssw2
StepHypRef Expression
1 paddssw.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 paddssw.p . . . . . 6 + = (+𝑃𝐾)
31, 2sspadd1 39816 . . . . 5 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
433adant3r3 1185 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌))
5 sstr 3958 . . . 4 ((𝑋 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋𝑍)
64, 5sylan 580 . . 3 (((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋𝑍)
76ex 412 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍𝑋𝑍))
8 simpl 482 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾𝐵)
9 simpr2 1196 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
10 simpr1 1195 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
111, 2sspadd2 39817 . . . . 5 ((𝐾𝐵𝑌𝐴𝑋𝐴) → 𝑌 ⊆ (𝑋 + 𝑌))
128, 9, 10, 11syl3anc 1373 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌 ⊆ (𝑋 + 𝑌))
13 sstr 3958 . . . 4 ((𝑌 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌𝑍)
1412, 13sylan 580 . . 3 (((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌𝑍)
1514ex 412 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍𝑌𝑍))
167, 15jcad 512 1 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Atomscatm 39263  +𝑃cpadd 39796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-padd 39797
This theorem is referenced by:  paddss  39846
  Copyright terms: Public domain W3C validator