Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssw2 Structured version   Visualization version   GIF version

Theorem paddssw2 39827
Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.)
Hypotheses
Ref Expression
paddssw.a 𝐴 = (Atoms‘𝐾)
paddssw.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddssw2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))

Proof of Theorem paddssw2
StepHypRef Expression
1 paddssw.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 paddssw.p . . . . . 6 + = (+𝑃𝐾)
31, 2sspadd1 39798 . . . . 5 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
433adant3r3 1183 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌))
5 sstr 4004 . . . 4 ((𝑋 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋𝑍)
64, 5sylan 580 . . 3 (((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋𝑍)
76ex 412 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍𝑋𝑍))
8 simpl 482 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾𝐵)
9 simpr2 1194 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
10 simpr1 1193 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
111, 2sspadd2 39799 . . . . 5 ((𝐾𝐵𝑌𝐴𝑋𝐴) → 𝑌 ⊆ (𝑋 + 𝑌))
128, 9, 10, 11syl3anc 1370 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌 ⊆ (𝑋 + 𝑌))
13 sstr 4004 . . . 4 ((𝑌 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌𝑍)
1412, 13sylan 580 . . 3 (((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌𝑍)
1514ex 412 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍𝑌𝑍))
167, 15jcad 512 1 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  Atomscatm 39245  +𝑃cpadd 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-padd 39779
This theorem is referenced by:  paddss  39828
  Copyright terms: Public domain W3C validator