Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddssw2 Structured version   Visualization version   GIF version

Theorem paddssw2 37481
Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.)
Hypotheses
Ref Expression
paddssw.a 𝐴 = (Atoms‘𝐾)
paddssw.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddssw2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))

Proof of Theorem paddssw2
StepHypRef Expression
1 paddssw.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 paddssw.p . . . . . 6 + = (+𝑃𝐾)
31, 2sspadd1 37452 . . . . 5 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
433adant3r3 1185 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌))
5 sstr 3885 . . . 4 ((𝑋 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋𝑍)
64, 5sylan 583 . . 3 (((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑋𝑍)
76ex 416 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍𝑋𝑍))
8 simpl 486 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾𝐵)
9 simpr2 1196 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
10 simpr1 1195 . . . . 5 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
111, 2sspadd2 37453 . . . . 5 ((𝐾𝐵𝑌𝐴𝑋𝐴) → 𝑌 ⊆ (𝑋 + 𝑌))
128, 9, 10, 11syl3anc 1372 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌 ⊆ (𝑋 + 𝑌))
13 sstr 3885 . . . 4 ((𝑌 ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌𝑍)
1412, 13sylan 583 . . 3 (((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑋 + 𝑌) ⊆ 𝑍) → 𝑌𝑍)
1514ex 416 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍𝑌𝑍))
167, 15jcad 516 1 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wss 3843  cfv 6339  (class class class)co 7170  Atomscatm 36900  +𝑃cpadd 37432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-padd 37433
This theorem is referenced by:  paddss  37482
  Copyright terms: Public domain W3C validator