Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspadd1 Structured version   Visualization version   GIF version

Theorem sspadd1 35889
Description: A projective subspace sum is a superset of its first summand. (ssun1 4005 analog.) (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
sspadd1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))

Proof of Theorem sspadd1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4005 . . 3 𝑋 ⊆ (𝑋𝑌)
2 ssun1 4005 . . 3 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
31, 2sstri 3836 . 2 𝑋 ⊆ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
4 eqid 2825 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2825 . . 3 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . 3 𝐴 = (Atoms‘𝐾)
7 padd0.p . . 3 + = (+𝑃𝐾)
84, 5, 6, 7paddval 35872 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
93, 8syl5sseqr 3879 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1111   = wceq 1656  wcel 2164  wrex 3118  {crab 3121  cun 3796  wss 3798   class class class wbr 4875  cfv 6127  (class class class)co 6910  lecple 16319  joincjn 17304  Atomscatm 35337  +𝑃cpadd 35869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-padd 35870
This theorem is referenced by:  paddasslem13  35906  paddasslem17  35910  paddidm  35915  paddssw2  35918  pmodlem1  35920  pmodlem2  35921  pmodl42N  35925  osumcllem1N  36030  osumcllem2N  36031  osumcllem10N  36039  pexmidlem6N  36049  pexmidlem7N  36050
  Copyright terms: Public domain W3C validator