![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd1 | Structured version Visualization version GIF version |
Description: A projective subspace sum is a superset of its first summand. (ssun1 4172 analog.) (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | β’ π΄ = (AtomsβπΎ) |
padd0.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
sspadd1 | β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β π β (π + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4172 | . . 3 β’ π β (π βͺ π) | |
2 | ssun1 4172 | . . 3 β’ (π βͺ π) β ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)}) | |
3 | 1, 2 | sstri 3991 | . 2 β’ π β ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)}) |
4 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
5 | eqid 2732 | . . 3 β’ (joinβπΎ) = (joinβπΎ) | |
6 | padd0.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
7 | padd0.p | . . 3 β’ + = (+πβπΎ) | |
8 | 4, 5, 6, 7 | paddval 38972 | . 2 β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β (π + π) = ((π βͺ π) βͺ {π β π΄ β£ βπ β π βπ β π π(leβπΎ)(π(joinβπΎ)π)})) |
9 | 3, 8 | sseqtrrid 4035 | 1 β’ ((πΎ β π΅ β§ π β π΄ β§ π β π΄) β π β (π + π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwrex 3070 {crab 3432 βͺ cun 3946 β wss 3948 class class class wbr 5148 βcfv 6543 (class class class)co 7411 lecple 17208 joincjn 18268 Atomscatm 38436 +πcpadd 38969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-padd 38970 |
This theorem is referenced by: paddasslem13 39006 paddasslem17 39010 paddidm 39015 paddssw2 39018 pmodlem1 39020 pmodlem2 39021 pmodl42N 39025 osumcllem1N 39130 osumcllem2N 39131 osumcllem10N 39139 pexmidlem6N 39149 pexmidlem7N 39150 |
Copyright terms: Public domain | W3C validator |