Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd1 | Structured version Visualization version GIF version |
Description: A projective subspace sum is a superset of its first summand. (ssun1 4102 analog.) (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
sspadd1 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . . 3 ⊢ 𝑋 ⊆ (𝑋 ∪ 𝑌) | |
2 | ssun1 4102 | . . 3 ⊢ (𝑋 ∪ 𝑌) ⊆ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) | |
3 | 1, 2 | sstri 3926 | . 2 ⊢ 𝑋 ⊆ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) |
4 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | padd0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | padd0.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
8 | 4, 5, 6, 7 | paddval 37739 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
9 | 3, 8 | sseqtrrid 3970 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ∪ cun 3881 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Atomscatm 37204 +𝑃cpadd 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-padd 37737 |
This theorem is referenced by: paddasslem13 37773 paddasslem17 37777 paddidm 37782 paddssw2 37785 pmodlem1 37787 pmodlem2 37788 pmodl42N 37792 osumcllem1N 37897 osumcllem2N 37898 osumcllem10N 37906 pexmidlem6N 37916 pexmidlem7N 37917 |
Copyright terms: Public domain | W3C validator |