| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd1 | Structured version Visualization version GIF version | ||
| Description: A projective subspace sum is a superset of its first summand. (ssun1 4151 analog.) (Contributed by NM, 3-Jan-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| sspadd1 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4151 | . . 3 ⊢ 𝑋 ⊆ (𝑋 ∪ 𝑌) | |
| 2 | ssun1 4151 | . . 3 ⊢ (𝑋 ∪ 𝑌) ⊆ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) | |
| 3 | 1, 2 | sstri 3966 | . 2 ⊢ 𝑋 ⊆ ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) |
| 4 | eqid 2734 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2734 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 6 | padd0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | padd0.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
| 8 | 4, 5, 6, 7 | paddval 39746 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) = ((𝑋 ∪ 𝑌) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
| 9 | 3, 8 | sseqtrrid 4000 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3413 ∪ cun 3922 ⊆ wss 3924 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 lecple 17265 joincjn 18310 Atomscatm 39210 +𝑃cpadd 39743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-padd 39744 |
| This theorem is referenced by: paddasslem13 39780 paddasslem17 39784 paddidm 39789 paddssw2 39792 pmodlem1 39794 pmodlem2 39795 pmodl42N 39799 osumcllem1N 39904 osumcllem2N 39905 osumcllem10N 39913 pexmidlem6N 39923 pexmidlem7N 39924 |
| Copyright terms: Public domain | W3C validator |