Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspadd1 Structured version   Visualization version   GIF version

Theorem sspadd1 36987
Description: A projective subspace sum is a superset of its first summand. (ssun1 4127 analog.) (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
sspadd1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))

Proof of Theorem sspadd1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4127 . . 3 𝑋 ⊆ (𝑋𝑌)
2 ssun1 4127 . . 3 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
31, 2sstri 3955 . 2 𝑋 ⊆ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
4 eqid 2820 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2820 . . 3 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . 3 𝐴 = (Atoms‘𝐾)
7 padd0.p . . 3 + = (+𝑃𝐾)
84, 5, 6, 7paddval 36970 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
93, 8sseqtrrid 3999 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wrex 3126  {crab 3129  cun 3911  wss 3913   class class class wbr 5042  cfv 6331  (class class class)co 7133  lecple 16551  joincjn 17533  Atomscatm 36435  +𝑃cpadd 36967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-padd 36968
This theorem is referenced by:  paddasslem13  37004  paddasslem17  37008  paddidm  37013  paddssw2  37016  pmodlem1  37018  pmodlem2  37019  pmodl42N  37023  osumcllem1N  37128  osumcllem2N  37129  osumcllem10N  37137  pexmidlem6N  37147  pexmidlem7N  37148
  Copyright terms: Public domain W3C validator