| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd2 | Structured version Visualization version GIF version | ||
| Description: A projective subspace sum is a superset of its second summand. (ssun2 4145 analog.) (Contributed by NM, 3-Jan-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| sspadd2 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4145 | . . 3 ⊢ 𝑋 ⊆ (𝑌 ∪ 𝑋) | |
| 2 | ssun1 4144 | . . 3 ⊢ (𝑌 ∪ 𝑋) ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) | |
| 3 | 1, 2 | sstri 3959 | . 2 ⊢ 𝑋 ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) |
| 4 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2730 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 6 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 8 | 4, 5, 6, 7 | paddval 39799 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
| 9 | 8 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
| 10 | 3, 9 | sseqtrrid 3993 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ∪ cun 3915 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 lecple 17234 joincjn 18279 Atomscatm 39263 +𝑃cpadd 39796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-padd 39797 |
| This theorem is referenced by: paddasslem11 39831 paddasslem12 39832 paddssw2 39845 pmodlem2 39848 pmodl42N 39852 osumcllem10N 39966 pexmidlem7N 39977 pl42lem3N 39982 |
| Copyright terms: Public domain | W3C validator |