![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd2 | Structured version Visualization version GIF version |
Description: A projective subspace sum is a superset of its second summand. (ssun2 4171 analog.) (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
sspadd2 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4171 | . . 3 ⊢ 𝑋 ⊆ (𝑌 ∪ 𝑋) | |
2 | ssun1 4170 | . . 3 ⊢ (𝑌 ∪ 𝑋) ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) | |
3 | 1, 2 | sstri 3989 | . 2 ⊢ 𝑋 ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) |
4 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2733 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
8 | 4, 5, 6, 7 | paddval 38575 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
9 | 8 | 3com23 1127 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
10 | 3, 9 | sseqtrrid 4033 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 {crab 3433 ∪ cun 3944 ⊆ wss 3946 class class class wbr 5144 ‘cfv 6535 (class class class)co 7396 lecple 17191 joincjn 18251 Atomscatm 38039 +𝑃cpadd 38572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-1st 7962 df-2nd 7963 df-padd 38573 |
This theorem is referenced by: paddasslem11 38607 paddasslem12 38608 paddssw2 38621 pmodlem2 38624 pmodl42N 38628 osumcllem10N 38742 pexmidlem7N 38753 pl42lem3N 38758 |
Copyright terms: Public domain | W3C validator |