![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd2 | Structured version Visualization version GIF version |
Description: A projective subspace sum is a superset of its second summand. (ssun2 4202 analog.) (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
sspadd2 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4202 | . . 3 ⊢ 𝑋 ⊆ (𝑌 ∪ 𝑋) | |
2 | ssun1 4201 | . . 3 ⊢ (𝑌 ∪ 𝑋) ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) | |
3 | 1, 2 | sstri 4018 | . 2 ⊢ 𝑋 ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) |
4 | eqid 2740 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2740 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
8 | 4, 5, 6, 7 | paddval 39755 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
9 | 8 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
10 | 3, 9 | sseqtrrid 4062 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ∪ cun 3974 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 Atomscatm 39219 +𝑃cpadd 39752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-padd 39753 |
This theorem is referenced by: paddasslem11 39787 paddasslem12 39788 paddssw2 39801 pmodlem2 39804 pmodl42N 39808 osumcllem10N 39922 pexmidlem7N 39933 pl42lem3N 39938 |
Copyright terms: Public domain | W3C validator |