![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspadd2 | Structured version Visualization version GIF version |
Description: A projective subspace sum is a superset of its second summand. (ssun2 4000 analog.) (Contributed by NM, 3-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
sspadd2 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4000 | . . 3 ⊢ 𝑋 ⊆ (𝑌 ∪ 𝑋) | |
2 | ssun1 3999 | . . 3 ⊢ (𝑌 ∪ 𝑋) ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) | |
3 | 1, 2 | sstri 3830 | . 2 ⊢ 𝑋 ⊆ ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) |
4 | eqid 2778 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2778 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
8 | 4, 5, 6, 7 | paddval 35952 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
9 | 8 | 3com23 1117 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑌 + 𝑋) = ((𝑌 ∪ 𝑋) ∪ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑌 ∃𝑟 ∈ 𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})) |
10 | 3, 9 | syl5sseqr 3873 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 {crab 3094 ∪ cun 3790 ⊆ wss 3792 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 lecple 16345 joincjn 17330 Atomscatm 35417 +𝑃cpadd 35949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-padd 35950 |
This theorem is referenced by: paddasslem11 35984 paddasslem12 35985 paddssw2 35998 pmodlem2 36001 pmodl42N 36005 osumcllem10N 36119 pexmidlem7N 36130 pl42lem3N 36135 |
Copyright terms: Public domain | W3C validator |