Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspadd2 Structured version   Visualization version   GIF version

Theorem sspadd2 37111
Description: A projective subspace sum is a superset of its second summand. (ssun2 4103 analog.) (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
sspadd2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑌 + 𝑋))

Proof of Theorem sspadd2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun2 4103 . . 3 𝑋 ⊆ (𝑌𝑋)
2 ssun1 4102 . . 3 (𝑌𝑋) ⊆ ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
31, 2sstri 3927 . 2 𝑋 ⊆ ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
4 eqid 2801 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2801 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7paddval 37093 . . 3 ((𝐾𝐵𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
983com23 1123 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑞𝑌𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
103, 9sseqtrrid 3971 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2112  wrex 3110  {crab 3113  cun 3882  wss 3884   class class class wbr 5033  cfv 6328  (class class class)co 7139  lecple 16568  joincjn 17550  Atomscatm 36558  +𝑃cpadd 37090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-padd 37091
This theorem is referenced by:  paddasslem11  37125  paddasslem12  37126  paddssw2  37139  pmodlem2  37142  pmodl42N  37146  osumcllem10N  37260  pexmidlem7N  37271  pl42lem3N  37276
  Copyright terms: Public domain W3C validator