![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddvaln0N | Structured version Visualization version GIF version |
Description: Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddvaln0N | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
5 | 1, 2, 3, 4 | elpaddn0 36329 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑠 ∈ (𝑋 + 𝑌) ↔ (𝑠 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑠 ≤ (𝑞 ∨ 𝑟)))) |
6 | breq1 4926 | . . . . 5 ⊢ (𝑝 = 𝑠 → (𝑝 ≤ (𝑞 ∨ 𝑟) ↔ 𝑠 ≤ (𝑞 ∨ 𝑟))) | |
7 | 6 | 2rexbidv 3239 | . . . 4 ⊢ (𝑝 = 𝑠 → (∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟) ↔ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑠 ≤ (𝑞 ∨ 𝑟))) |
8 | 7 | elrab 3589 | . . 3 ⊢ (𝑠 ∈ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)} ↔ (𝑠 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑠 ≤ (𝑞 ∨ 𝑟))) |
9 | 5, 8 | syl6bbr 281 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑠 ∈ (𝑋 + 𝑌) ↔ 𝑠 ∈ {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
10 | 9 | eqrdv 2770 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = {𝑝 ∈ 𝐴 ∣ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑝 ≤ (𝑞 ∨ 𝑟)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∃wrex 3083 {crab 3086 ⊆ wss 3825 ∅c0 4173 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 lecple 16418 joincjn 17402 Latclat 17503 Atomscatm 35792 +𝑃cpadd 36324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-lub 17432 df-join 17434 df-lat 17504 df-ats 35796 df-padd 36325 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |