| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddri | Structured version Visualization version GIF version | ||
| Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.) |
| Ref | Expression |
|---|---|
| paddfval.l | ⊢ ≤ = (le‘𝐾) |
| paddfval.j | ⊢ ∨ = (join‘𝐾) |
| paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| paddfval.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| elpaddri | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l 1202 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ 𝐴) | |
| 2 | simp2l 1200 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ∈ 𝑋) | |
| 3 | simp2r 1201 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑅 ∈ 𝑌) | |
| 4 | simp3r 1203 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ≤ (𝑄 ∨ 𝑅)) | |
| 5 | oveq1 7353 | . . . . 5 ⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | |
| 6 | 5 | breq2d 5101 | . . . 4 ⊢ (𝑞 = 𝑄 → (𝑆 ≤ (𝑞 ∨ 𝑟) ↔ 𝑆 ≤ (𝑄 ∨ 𝑟))) |
| 7 | oveq2 7354 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) | |
| 8 | 7 | breq2d 5101 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑆 ≤ (𝑄 ∨ 𝑟) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 9 | 6, 8 | rspc2ev 3585 | . . 3 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)) |
| 10 | 2, 3, 4, 9 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)) |
| 11 | ne0i 4288 | . . . . . 6 ⊢ (𝑄 ∈ 𝑋 → 𝑋 ≠ ∅) | |
| 12 | ne0i 4288 | . . . . . 6 ⊢ (𝑅 ∈ 𝑌 → 𝑌 ≠ ∅) | |
| 13 | 11, 12 | anim12i 613 | . . . . 5 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) |
| 14 | 13 | anim2i 617 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))) |
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))) |
| 16 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 17 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 18 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 19 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 20 | 16, 17, 18, 19 | elpaddn0 39909 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) |
| 21 | 15, 20 | syl 17 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) |
| 22 | 1, 10, 21 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Latclat 18337 Atomscatm 39372 +𝑃cpadd 39904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-lub 18250 df-join 18252 df-lat 18338 df-ats 39376 df-padd 39905 |
| This theorem is referenced by: elpaddatriN 39912 paddasslem8 39936 paddasslem12 39940 paddasslem13 39941 pmodlem1 39955 osumcllem5N 40069 pexmidlem2N 40080 |
| Copyright terms: Public domain | W3C validator |