|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddri | Structured version Visualization version GIF version | ||
| Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.) | 
| Ref | Expression | 
|---|---|
| paddfval.l | ⊢ ≤ = (le‘𝐾) | 
| paddfval.j | ⊢ ∨ = (join‘𝐾) | 
| paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| paddfval.p | ⊢ + = (+𝑃‘𝐾) | 
| Ref | Expression | 
|---|---|
| elpaddri | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp3l 1201 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ 𝐴) | |
| 2 | simp2l 1199 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ∈ 𝑋) | |
| 3 | simp2r 1200 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑅 ∈ 𝑌) | |
| 4 | simp3r 1202 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ≤ (𝑄 ∨ 𝑅)) | |
| 5 | oveq1 7439 | . . . . 5 ⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | |
| 6 | 5 | breq2d 5154 | . . . 4 ⊢ (𝑞 = 𝑄 → (𝑆 ≤ (𝑞 ∨ 𝑟) ↔ 𝑆 ≤ (𝑄 ∨ 𝑟))) | 
| 7 | oveq2 7440 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) | |
| 8 | 7 | breq2d 5154 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑆 ≤ (𝑄 ∨ 𝑟) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) | 
| 9 | 6, 8 | rspc2ev 3634 | . . 3 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)) | 
| 10 | 2, 3, 4, 9 | syl3anc 1372 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)) | 
| 11 | ne0i 4340 | . . . . . 6 ⊢ (𝑄 ∈ 𝑋 → 𝑋 ≠ ∅) | |
| 12 | ne0i 4340 | . . . . . 6 ⊢ (𝑅 ∈ 𝑌 → 𝑌 ≠ ∅) | |
| 13 | 11, 12 | anim12i 613 | . . . . 5 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) | 
| 14 | 13 | anim2i 617 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))) | 
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))) | 
| 16 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 17 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 18 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 19 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 20 | 16, 17, 18, 19 | elpaddn0 39803 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) | 
| 21 | 15, 20 | syl 17 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) | 
| 22 | 1, 10, 21 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 ⊆ wss 3950 ∅c0 4332 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 lecple 17305 joincjn 18358 Latclat 18477 Atomscatm 39265 +𝑃cpadd 39798 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-lub 18392 df-join 18394 df-lat 18478 df-ats 39269 df-padd 39799 | 
| This theorem is referenced by: elpaddatriN 39806 paddasslem8 39830 paddasslem12 39834 paddasslem13 39835 pmodlem1 39849 osumcllem5N 39963 pexmidlem2N 39974 | 
| Copyright terms: Public domain | W3C validator |