Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddri Structured version   Visualization version   GIF version

Theorem elpaddri 39805
Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddri (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌))

Proof of Theorem elpaddri
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3l 1201 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆𝐴)
2 simp2l 1199 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑄𝑋)
3 simp2r 1200 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑅𝑌)
4 simp3r 1202 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 (𝑄 𝑅))
5 oveq1 7439 . . . . 5 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
65breq2d 5154 . . . 4 (𝑞 = 𝑄 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑄 𝑟)))
7 oveq2 7440 . . . . 5 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
87breq2d 5154 . . . 4 (𝑟 = 𝑅 → (𝑆 (𝑄 𝑟) ↔ 𝑆 (𝑄 𝑅)))
96, 8rspc2ev 3634 . . 3 ((𝑄𝑋𝑅𝑌𝑆 (𝑄 𝑅)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
102, 3, 4, 9syl3anc 1372 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
11 ne0i 4340 . . . . . 6 (𝑄𝑋𝑋 ≠ ∅)
12 ne0i 4340 . . . . . 6 (𝑅𝑌𝑌 ≠ ∅)
1311, 12anim12i 613 . . . . 5 ((𝑄𝑋𝑅𝑌) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
1413anim2i 617 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌)) → ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)))
15143adant3 1132 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)))
16 paddfval.l . . . 4 = (le‘𝐾)
17 paddfval.j . . . 4 = (join‘𝐾)
18 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
19 paddfval.p . . . 4 + = (+𝑃𝐾)
2016, 17, 18, 19elpaddn0 39803 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
2115, 20syl 17 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
221, 10, 21mpbir2and 713 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  cfv 6560  (class class class)co 7432  lecple 17305  joincjn 18358  Latclat 18477  Atomscatm 39265  +𝑃cpadd 39798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-lub 18392  df-join 18394  df-lat 18478  df-ats 39269  df-padd 39799
This theorem is referenced by:  elpaddatriN  39806  paddasslem8  39830  paddasslem12  39834  paddasslem13  39835  pmodlem1  39849  osumcllem5N  39963  pexmidlem2N  39974
  Copyright terms: Public domain W3C validator