Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddri Structured version   Visualization version   GIF version

Theorem elpaddri 37743
Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddri (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌))

Proof of Theorem elpaddri
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3l 1199 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆𝐴)
2 simp2l 1197 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑄𝑋)
3 simp2r 1198 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑅𝑌)
4 simp3r 1200 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 (𝑄 𝑅))
5 oveq1 7262 . . . . 5 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
65breq2d 5082 . . . 4 (𝑞 = 𝑄 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑄 𝑟)))
7 oveq2 7263 . . . . 5 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
87breq2d 5082 . . . 4 (𝑟 = 𝑅 → (𝑆 (𝑄 𝑟) ↔ 𝑆 (𝑄 𝑅)))
96, 8rspc2ev 3564 . . 3 ((𝑄𝑋𝑅𝑌𝑆 (𝑄 𝑅)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
102, 3, 4, 9syl3anc 1369 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
11 ne0i 4265 . . . . . 6 (𝑄𝑋𝑋 ≠ ∅)
12 ne0i 4265 . . . . . 6 (𝑅𝑌𝑌 ≠ ∅)
1311, 12anim12i 612 . . . . 5 ((𝑄𝑋𝑅𝑌) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
1413anim2i 616 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌)) → ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)))
15143adant3 1130 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)))
16 paddfval.l . . . 4 = (le‘𝐾)
17 paddfval.j . . . 4 = (join‘𝐾)
18 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
19 paddfval.p . . . 4 + = (+𝑃𝐾)
2016, 17, 18, 19elpaddn0 37741 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
2115, 20syl 17 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
221, 10, 21mpbir2and 709 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-lub 17979  df-join 17981  df-lat 18065  df-ats 37208  df-padd 37737
This theorem is referenced by:  elpaddatriN  37744  paddasslem8  37768  paddasslem12  37772  paddasslem13  37773  pmodlem1  37787  osumcllem5N  37901  pexmidlem2N  37912
  Copyright terms: Public domain W3C validator