| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for precofval 49338 to enable catlid 17650 or catrid 17651. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| precofvallem.a | ⊢ 𝐴 = (Base‘𝐶) |
| precofvallem.b | ⊢ 𝐵 = (Base‘𝐸) |
| precofvallem.1 | ⊢ 1 = (Id‘𝐷) |
| precofvallem.i | ⊢ 𝐼 = (Id‘𝐸) |
| precofvallem.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precofvallem.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| precofvallem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| precofvallem | ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precofvallem.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 3 | precofvallem.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 4 | 1, 2, 3 | funcf1 17834 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐷)) |
| 5 | precofvallem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 4, 5 | fvco3d 6963 | . . . 4 ⊢ (𝜑 → (( 1 ∘ 𝐹)‘𝑋) = ( 1 ‘(𝐹‘𝑋))) |
| 7 | 6 | fveq2d 6864 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘( 1 ‘(𝐹‘𝑋)))) |
| 8 | precofvallem.1 | . . . 4 ⊢ 1 = (Id‘𝐷) | |
| 9 | precofvallem.i | . . . 4 ⊢ 𝐼 = (Id‘𝐸) | |
| 10 | precofvallem.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 11 | 4, 5 | ffvelcdmd 7059 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 12 | 2, 8, 9, 10, 11 | funcid 17838 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘( 1 ‘(𝐹‘𝑋))) = (𝐼‘(𝐾‘(𝐹‘𝑋)))) |
| 13 | 7, 12 | eqtrd 2765 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋)))) |
| 14 | precofvallem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
| 15 | 2, 14, 10 | funcf1 17834 | . . 3 ⊢ (𝜑 → 𝐾:(Base‘𝐷)⟶𝐵) |
| 16 | 15, 11 | ffvelcdmd 7059 | . 2 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) ∈ 𝐵) |
| 17 | 13, 16 | jca 511 | 1 ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 ∘ ccom 5644 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Idccid 17632 Func cfunc 17822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-ixp 8873 df-func 17826 |
| This theorem is referenced by: precofvalALT 49339 |
| Copyright terms: Public domain | W3C validator |