Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  precofvallem Structured version   Visualization version   GIF version

Theorem precofvallem 49337
Description: Lemma for precofval 49338 to enable catlid 17650 or catrid 17651. (Contributed by Zhi Wang, 11-Oct-2025.)
Hypotheses
Ref Expression
precofvallem.a 𝐴 = (Base‘𝐶)
precofvallem.b 𝐵 = (Base‘𝐸)
precofvallem.1 1 = (Id‘𝐷)
precofvallem.i 𝐼 = (Id‘𝐸)
precofvallem.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
precofvallem.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
precofvallem.x (𝜑𝑋𝐴)
Assertion
Ref Expression
precofvallem (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))

Proof of Theorem precofvallem
StepHypRef Expression
1 precofvallem.a . . . . . 6 𝐴 = (Base‘𝐶)
2 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 precofvallem.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
41, 2, 3funcf1 17834 . . . . 5 (𝜑𝐹:𝐴⟶(Base‘𝐷))
5 precofvallem.x . . . . 5 (𝜑𝑋𝐴)
64, 5fvco3d 6963 . . . 4 (𝜑 → (( 1𝐹)‘𝑋) = ( 1 ‘(𝐹𝑋)))
76fveq2d 6864 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (((𝐹𝑋)𝐿(𝐹𝑋))‘( 1 ‘(𝐹𝑋))))
8 precofvallem.1 . . . 4 1 = (Id‘𝐷)
9 precofvallem.i . . . 4 𝐼 = (Id‘𝐸)
10 precofvallem.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
114, 5ffvelcdmd 7059 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
122, 8, 9, 10, 11funcid 17838 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘( 1 ‘(𝐹𝑋))) = (𝐼‘(𝐾‘(𝐹𝑋))))
137, 12eqtrd 2765 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))))
14 precofvallem.b . . . 4 𝐵 = (Base‘𝐸)
152, 14, 10funcf1 17834 . . 3 (𝜑𝐾:(Base‘𝐷)⟶𝐵)
1615, 11ffvelcdmd 7059 . 2 (𝜑 → (𝐾‘(𝐹𝑋)) ∈ 𝐵)
1713, 16jca 511 1 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5109  ccom 5644  cfv 6513  (class class class)co 7389  Basecbs 17185  Idccid 17632   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803  df-ixp 8873  df-func 17826
This theorem is referenced by:  precofvalALT  49339
  Copyright terms: Public domain W3C validator