| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for precofval 49352 to enable catlid 17589 or catrid 17590. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| precofvallem.a | ⊢ 𝐴 = (Base‘𝐶) |
| precofvallem.b | ⊢ 𝐵 = (Base‘𝐸) |
| precofvallem.1 | ⊢ 1 = (Id‘𝐷) |
| precofvallem.i | ⊢ 𝐼 = (Id‘𝐸) |
| precofvallem.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precofvallem.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| precofvallem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| precofvallem | ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precofvallem.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 3 | precofvallem.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 4 | 1, 2, 3 | funcf1 17773 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐷)) |
| 5 | precofvallem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 4, 5 | fvco3d 6923 | . . . 4 ⊢ (𝜑 → (( 1 ∘ 𝐹)‘𝑋) = ( 1 ‘(𝐹‘𝑋))) |
| 7 | 6 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘( 1 ‘(𝐹‘𝑋)))) |
| 8 | precofvallem.1 | . . . 4 ⊢ 1 = (Id‘𝐷) | |
| 9 | precofvallem.i | . . . 4 ⊢ 𝐼 = (Id‘𝐸) | |
| 10 | precofvallem.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 11 | 4, 5 | ffvelcdmd 7019 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 12 | 2, 8, 9, 10, 11 | funcid 17777 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘( 1 ‘(𝐹‘𝑋))) = (𝐼‘(𝐾‘(𝐹‘𝑋)))) |
| 13 | 7, 12 | eqtrd 2764 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋)))) |
| 14 | precofvallem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
| 15 | 2, 14, 10 | funcf1 17773 | . . 3 ⊢ (𝜑 → 𝐾:(Base‘𝐷)⟶𝐵) |
| 16 | 15, 11 | ffvelcdmd 7019 | . 2 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) ∈ 𝐵) |
| 17 | 13, 16 | jca 511 | 1 ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Idccid 17571 Func cfunc 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-ixp 8825 df-func 17765 |
| This theorem is referenced by: precofvalALT 49353 |
| Copyright terms: Public domain | W3C validator |