Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  precofvallem Structured version   Visualization version   GIF version

Theorem precofvallem 49034
Description: Lemma for precofval 49035 to enable catlid 17722 or catrid 17723. (Contributed by Zhi Wang, 11-Oct-2025.)
Hypotheses
Ref Expression
precofvallem.a 𝐴 = (Base‘𝐶)
precofvallem.b 𝐵 = (Base‘𝐸)
precofvallem.1 1 = (Id‘𝐷)
precofvallem.i 𝐼 = (Id‘𝐸)
precofvallem.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
precofvallem.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
precofvallem.x (𝜑𝑋𝐴)
Assertion
Ref Expression
precofvallem (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))

Proof of Theorem precofvallem
StepHypRef Expression
1 precofvallem.a . . . . . 6 𝐴 = (Base‘𝐶)
2 eqid 2736 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 precofvallem.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
41, 2, 3funcf1 17907 . . . . 5 (𝜑𝐹:𝐴⟶(Base‘𝐷))
5 precofvallem.x . . . . 5 (𝜑𝑋𝐴)
64, 5fvco3d 7007 . . . 4 (𝜑 → (( 1𝐹)‘𝑋) = ( 1 ‘(𝐹𝑋)))
76fveq2d 6908 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (((𝐹𝑋)𝐿(𝐹𝑋))‘( 1 ‘(𝐹𝑋))))
8 precofvallem.1 . . . 4 1 = (Id‘𝐷)
9 precofvallem.i . . . 4 𝐼 = (Id‘𝐸)
10 precofvallem.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
114, 5ffvelcdmd 7103 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
122, 8, 9, 10, 11funcid 17911 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘( 1 ‘(𝐹𝑋))) = (𝐼‘(𝐾‘(𝐹𝑋))))
137, 12eqtrd 2776 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))))
14 precofvallem.b . . . 4 𝐵 = (Base‘𝐸)
152, 14, 10funcf1 17907 . . 3 (𝜑𝐾:(Base‘𝐷)⟶𝐵)
1615, 11ffvelcdmd 7103 . 2 (𝜑 → (𝐾‘(𝐹𝑋)) ∈ 𝐵)
1713, 16jca 511 1 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5141  ccom 5687  cfv 6559  (class class class)co 7429  Basecbs 17243  Idccid 17704   Func cfunc 17895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-map 8864  df-ixp 8934  df-func 17899
This theorem is referenced by:  precofvalALT  49036
  Copyright terms: Public domain W3C validator