| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > precofvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for precofval 49478 to enable catlid 17589 or catrid 17590. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| precofvallem.a | ⊢ 𝐴 = (Base‘𝐶) |
| precofvallem.b | ⊢ 𝐵 = (Base‘𝐸) |
| precofvallem.1 | ⊢ 1 = (Id‘𝐷) |
| precofvallem.i | ⊢ 𝐼 = (Id‘𝐸) |
| precofvallem.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| precofvallem.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| precofvallem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| precofvallem | ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | precofvallem.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 3 | precofvallem.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 4 | 1, 2, 3 | funcf1 17773 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐷)) |
| 5 | precofvallem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 4, 5 | fvco3d 6922 | . . . 4 ⊢ (𝜑 → (( 1 ∘ 𝐹)‘𝑋) = ( 1 ‘(𝐹‘𝑋))) |
| 7 | 6 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘( 1 ‘(𝐹‘𝑋)))) |
| 8 | precofvallem.1 | . . . 4 ⊢ 1 = (Id‘𝐷) | |
| 9 | precofvallem.i | . . . 4 ⊢ 𝐼 = (Id‘𝐸) | |
| 10 | precofvallem.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 11 | 4, 5 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
| 12 | 2, 8, 9, 10, 11 | funcid 17777 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘( 1 ‘(𝐹‘𝑋))) = (𝐼‘(𝐾‘(𝐹‘𝑋)))) |
| 13 | 7, 12 | eqtrd 2766 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋)))) |
| 14 | precofvallem.b | . . . 4 ⊢ 𝐵 = (Base‘𝐸) | |
| 15 | 2, 14, 10 | funcf1 17773 | . . 3 ⊢ (𝜑 → 𝐾:(Base‘𝐷)⟶𝐵) |
| 16 | 15, 11 | ffvelcdmd 7018 | . 2 ⊢ (𝜑 → (𝐾‘(𝐹‘𝑋)) ∈ 𝐵) |
| 17 | 13, 16 | jca 511 | 1 ⊢ (𝜑 → ((((𝐹‘𝑋)𝐿(𝐹‘𝑋))‘(( 1 ∘ 𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹‘𝑋))) ∧ (𝐾‘(𝐹‘𝑋)) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Idccid 17571 Func cfunc 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ixp 8822 df-func 17765 |
| This theorem is referenced by: precofvalALT 49479 |
| Copyright terms: Public domain | W3C validator |