Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  precofvallem Structured version   Visualization version   GIF version

Theorem precofvallem 49351
Description: Lemma for precofval 49352 to enable catlid 17589 or catrid 17590. (Contributed by Zhi Wang, 11-Oct-2025.)
Hypotheses
Ref Expression
precofvallem.a 𝐴 = (Base‘𝐶)
precofvallem.b 𝐵 = (Base‘𝐸)
precofvallem.1 1 = (Id‘𝐷)
precofvallem.i 𝐼 = (Id‘𝐸)
precofvallem.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
precofvallem.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
precofvallem.x (𝜑𝑋𝐴)
Assertion
Ref Expression
precofvallem (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))

Proof of Theorem precofvallem
StepHypRef Expression
1 precofvallem.a . . . . . 6 𝐴 = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 precofvallem.f . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
41, 2, 3funcf1 17773 . . . . 5 (𝜑𝐹:𝐴⟶(Base‘𝐷))
5 precofvallem.x . . . . 5 (𝜑𝑋𝐴)
64, 5fvco3d 6923 . . . 4 (𝜑 → (( 1𝐹)‘𝑋) = ( 1 ‘(𝐹𝑋)))
76fveq2d 6826 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (((𝐹𝑋)𝐿(𝐹𝑋))‘( 1 ‘(𝐹𝑋))))
8 precofvallem.1 . . . 4 1 = (Id‘𝐷)
9 precofvallem.i . . . 4 𝐼 = (Id‘𝐸)
10 precofvallem.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
114, 5ffvelcdmd 7019 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
122, 8, 9, 10, 11funcid 17777 . . 3 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘( 1 ‘(𝐹𝑋))) = (𝐼‘(𝐾‘(𝐹𝑋))))
137, 12eqtrd 2764 . 2 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))))
14 precofvallem.b . . . 4 𝐵 = (Base‘𝐸)
152, 14, 10funcf1 17773 . . 3 (𝜑𝐾:(Base‘𝐷)⟶𝐵)
1615, 11ffvelcdmd 7019 . 2 (𝜑 → (𝐾‘(𝐹𝑋)) ∈ 𝐵)
1713, 16jca 511 1 (𝜑 → ((((𝐹𝑋)𝐿(𝐹𝑋))‘(( 1𝐹)‘𝑋)) = (𝐼‘(𝐾‘(𝐹𝑋))) ∧ (𝐾‘(𝐹𝑋)) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  ccom 5623  cfv 6482  (class class class)co 7349  Basecbs 17120  Idccid 17571   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-ixp 8825  df-func 17765
This theorem is referenced by:  precofvalALT  49353
  Copyright terms: Public domain W3C validator