Proof of Theorem precofvalALT
Step | Hyp | Ref
| Expression |
1 | | precofval.o |
. . 3
⊢ (𝜑 → ⚬ = (〈𝑄, 𝑅〉 curryF
((〈𝐶, 𝐷〉
∘F 𝐸) ∘func (𝑄swapF𝑅)))) |
2 | | precofval.q |
. . . 4
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
3 | 2 | fucbas 18004 |
. . 3
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
4 | | relfunc 17903 |
. . . . . 6
⊢ Rel
(𝐶 Func 𝐷) |
5 | | precofval.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
6 | | 1st2ndbr 8063 |
. . . . . 6
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
7 | 4, 5, 6 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
8 | 7 | funcrcl2 48885 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
9 | 7 | funcrcl3 48886 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
10 | 2, 8, 9 | fuccat 18014 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Cat) |
11 | | precofval.r |
. . . 4
⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
12 | | precofval.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Cat) |
13 | 11, 9, 12 | fuccat 18014 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Cat) |
14 | 11, 2 | oveq12i 7441 |
. . . 4
⊢ (𝑅 ×c
𝑄) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
15 | | eqid 2736 |
. . . 4
⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) |
16 | 14, 15, 8, 9, 12 | fucofunca 49028 |
. . 3
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ ((𝑅 ×c 𝑄) Func (𝐶 FuncCat 𝐸))) |
17 | | precofval.k |
. . 3
⊢ (𝜑 → 𝐾 = ((1st ‘ ⚬
)‘𝐹)) |
18 | 11 | fucbas 18004 |
. . 3
⊢ (𝐷 Func 𝐸) = (Base‘𝑅) |
19 | | eqid 2736 |
. . . 4
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
20 | 11, 19 | fuchom 18005 |
. . 3
⊢ (𝐷 Nat 𝐸) = (Hom ‘𝑅) |
21 | | eqid 2736 |
. . 3
⊢
(Id‘𝑄) =
(Id‘𝑄) |
22 | 1, 3, 10, 13, 16, 5, 17, 18, 20, 21 | tposcurf1 48972 |
. 2
⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹))))〉) |
23 | | df-ov 7432 |
. . . . 5
⊢ (𝑔(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸))𝐹) = ((1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))‘〈𝑔, 𝐹〉) |
24 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = (〈𝐶, 𝐷〉 ∘F 𝐸)) |
25 | 8, 9, 12, 24 | fucoelvv 48988 |
. . . . . . . . 9
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ (V ×
V)) |
26 | | 1st2nd2 8049 |
. . . . . . . . 9
⊢
((〈𝐶, 𝐷〉
∘F 𝐸) ∈ (V × V) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
29 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
30 | | relfunc 17903 |
. . . . . . . . 9
⊢ Rel
(𝐷 Func 𝐸) |
31 | | 1st2ndbr 8063 |
. . . . . . . . 9
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (1st ‘𝑔)(𝐷 Func 𝐸)(2nd ‘𝑔)) |
32 | 30, 31 | mpan 690 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝐷 Func 𝐸) → (1st ‘𝑔)(𝐷 Func 𝐸)(2nd ‘𝑔)) |
33 | 32 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (1st ‘𝑔)(𝐷 Func 𝐸)(2nd ‘𝑔)) |
34 | | 1st2nd 8060 |
. . . . . . . . . 10
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = 〈(1st ‘𝑔), (2nd ‘𝑔)〉) |
35 | 30, 34 | mpan 690 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝐷 Func 𝐸) → 𝑔 = 〈(1st ‘𝑔), (2nd ‘𝑔)〉) |
36 | 35 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = 〈(1st ‘𝑔), (2nd ‘𝑔)〉) |
37 | | 1st2nd 8060 |
. . . . . . . . . 10
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
38 | 4, 5, 37 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
39 | 38 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
40 | 36, 39 | opeq12d 4879 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 〈𝑔, 𝐹〉 = 〈〈(1st
‘𝑔), (2nd
‘𝑔)〉,
〈(1st ‘𝐹), (2nd ‘𝐹)〉〉) |
41 | 28, 29, 33, 40 | fuco11 48994 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → ((1st
‘(〈𝐶, 𝐷〉
∘F 𝐸))‘〈𝑔, 𝐹〉) = (〈(1st
‘𝑔), (2nd
‘𝑔)〉
∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
42 | 36, 39 | oveq12d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔 ∘func 𝐹) = (〈(1st
‘𝑔), (2nd
‘𝑔)〉
∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
43 | 41, 42 | eqtr4d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → ((1st
‘(〈𝐶, 𝐷〉
∘F 𝐸))‘〈𝑔, 𝐹〉) = (𝑔 ∘func 𝐹)) |
44 | 23, 43 | eqtrid 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝐹) = (𝑔 ∘func 𝐹)) |
45 | 44 | mpteq2dva 5240 |
. . 3
⊢ (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝐹)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹))) |
46 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Id‘𝐷) =
(Id‘𝐷) |
47 | 2, 21, 46, 5 | fucid 18015 |
. . . . . . . . 9
⊢ (𝜑 → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st ‘𝐹))) |
48 | 47 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st ‘𝐹))) |
49 | 48 | oveq2d 7445 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹)) = (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝐷) ∘ (1st ‘𝐹)))) |
50 | 27 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈(1st
‘(〈𝐶, 𝐷〉
∘F 𝐸)), (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〉) |
51 | | eqidd 2737 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → 〈𝑔, 𝐹〉 = 〈𝑔, 𝐹〉) |
52 | | eqidd 2737 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → 〈ℎ, 𝐹〉 = 〈ℎ, 𝐹〉) |
53 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
54 | 2, 53, 46, 5 | fucidcl 18009 |
. . . . . . . . 9
⊢ (𝜑 → ((Id‘𝐷) ∘ (1st
‘𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹)) |
55 | 54 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → ((Id‘𝐷) ∘ (1st ‘𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹)) |
56 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) |
57 | 50, 51, 52, 55, 56 | fuco22a 49018 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝐷) ∘ (1st ‘𝐹))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st ‘𝐹)‘𝑥))(〈((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥))〉(comp‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝑔)((1st ‘𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st ‘𝐹))‘𝑥))))) |
58 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝐶) =
(Base‘𝐶) |
59 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝐸) =
(Base‘𝐸) |
60 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Id‘𝐸) =
(Id‘𝐸) |
61 | 7 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
62 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸)) → (1st ‘𝑔)(𝐷 Func 𝐸)(2nd ‘𝑔)) |
63 | 62 | ad3antlr 731 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘𝑔)(𝐷 Func 𝐸)(2nd ‘𝑔)) |
64 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
65 | 58, 59, 46, 60, 61, 63, 64 | precofvallem 49034 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (((((1st ‘𝐹)‘𝑥)(2nd ‘𝑔)((1st ‘𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st ‘𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥))) ∧ ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥)) ∈ (Base‘𝐸))) |
66 | 65 | simpld 494 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((((1st ‘𝐹)‘𝑥)(2nd ‘𝑔)((1st ‘𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st ‘𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)))) |
67 | 66 | oveq2d 7445 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st ‘𝐹)‘𝑥))(〈((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥))〉(comp‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝑔)((1st ‘𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st ‘𝐹))‘𝑥))) = ((𝑎‘((1st ‘𝐹)‘𝑥))(〈((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥))〉(comp‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))((Id‘𝐸)‘((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥))))) |
68 | | eqid 2736 |
. . . . . . . . . 10
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
69 | 12 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
70 | 65 | simprd 495 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)) ∈ (Base‘𝐸)) |
71 | | eqid 2736 |
. . . . . . . . . 10
⊢
(comp‘𝐸) =
(comp‘𝐸) |
72 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝐷) =
(Base‘𝐷) |
73 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) |
74 | 73 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ℎ ∈ (𝐷 Func 𝐸)) |
75 | | 1st2ndbr 8063 |
. . . . . . . . . . . . 13
⊢ ((Rel
(𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸)) → (1st ‘ℎ)(𝐷 Func 𝐸)(2nd ‘ℎ)) |
76 | 30, 74, 75 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘ℎ)(𝐷 Func 𝐸)(2nd ‘ℎ)) |
77 | 72, 59, 76 | funcf1 17907 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st ‘ℎ):(Base‘𝐷)⟶(Base‘𝐸)) |
78 | 7 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
79 | 58, 72, 78 | funcf1 17907 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
80 | 79 | ffvelcdmda 7102 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
81 | 77, 80 | ffvelcdmd 7103 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st ‘ℎ)‘((1st
‘𝐹)‘𝑥)) ∈ (Base‘𝐸)) |
82 | 56 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) |
83 | 19, 82 | nat1st2nd 17995 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (〈(1st ‘𝑔), (2nd ‘𝑔)〉(𝐷 Nat 𝐸)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
84 | 19, 83, 72, 68, 80 | natcl 17997 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘((1st ‘𝐹)‘𝑥)) ∈ (((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥))(Hom ‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))) |
85 | 59, 68, 60, 69, 70, 71, 81, 84 | catrid 17723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st ‘𝐹)‘𝑥))(〈((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥))〉(comp‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))((Id‘𝐸)‘((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)))) = (𝑎‘((1st ‘𝐹)‘𝑥))) |
86 | 67, 85 | eqtrd 2776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st ‘𝐹)‘𝑥))(〈((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥))〉(comp‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝑔)((1st ‘𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st ‘𝐹))‘𝑥))) = (𝑎‘((1st ‘𝐹)‘𝑥))) |
87 | 86 | mpteq2dva 5240 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st ‘𝐹)‘𝑥))(〈((1st ‘𝑔)‘((1st
‘𝐹)‘𝑥)), ((1st
‘𝑔)‘((1st ‘𝐹)‘𝑥))〉(comp‘𝐸)((1st ‘ℎ)‘((1st ‘𝐹)‘𝑥)))((((1st ‘𝐹)‘𝑥)(2nd ‘𝑔)((1st ‘𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st ‘𝐹))‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) |
88 | 49, 57, 87 | 3eqtrd 2780 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ)) → (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))) |
89 | 88 | mpteq2dva 5240 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸))) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥))))) |
90 | 89 | 3impb 1115 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 Func 𝐸) ∧ ℎ ∈ (𝐷 Func 𝐸)) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥))))) |
91 | 90 | mpoeq3dva 7508 |
. . 3
⊢ (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))) |
92 | 45, 91 | opeq12d 4879 |
. 2
⊢ (𝜑 → 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑎(〈𝑔, 𝐹〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈ℎ, 𝐹〉)((Id‘𝑄)‘𝐹))))〉 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |
93 | 22, 92 | eqtrd 2776 |
1
⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔 ∘func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ℎ ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st ‘𝐹)‘𝑥)))))〉) |