Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  precofvalALT Structured version   Visualization version   GIF version

Theorem precofvalALT 49036
Description: Alternate proof of precofval 49035. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
precofval.q 𝑄 = (𝐶 FuncCat 𝐷)
precofval.r 𝑅 = (𝐷 FuncCat 𝐸)
precofval.o (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄swapF𝑅))))
precofval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
precofval.e (𝜑𝐸 ∈ Cat)
precofval.k (𝜑𝐾 = ((1st )‘𝐹))
Assertion
Ref Expression
precofvalALT (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
Distinct variable groups:   𝐶,𝑎,𝑔,,𝑥   𝐷,𝑎,𝑔,,𝑥   𝐸,𝑎,𝑔,,𝑥   𝐹,𝑎,𝑔,,𝑥   𝑄,𝑎,𝑔,   𝑅,𝑎,𝑔,   𝜑,𝑎,𝑔,,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑅(𝑥)   𝐾(𝑥,𝑔,,𝑎)   (𝑥,𝑔,,𝑎)

Proof of Theorem precofvalALT
StepHypRef Expression
1 precofval.o . . 3 (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄swapF𝑅))))
2 precofval.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
32fucbas 18004 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
4 relfunc 17903 . . . . . 6 Rel (𝐶 Func 𝐷)
5 precofval.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
6 1st2ndbr 8063 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
74, 5, 6sylancr 587 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
87funcrcl2 48885 . . . 4 (𝜑𝐶 ∈ Cat)
97funcrcl3 48886 . . . 4 (𝜑𝐷 ∈ Cat)
102, 8, 9fuccat 18014 . . 3 (𝜑𝑄 ∈ Cat)
11 precofval.r . . . 4 𝑅 = (𝐷 FuncCat 𝐸)
12 precofval.e . . . 4 (𝜑𝐸 ∈ Cat)
1311, 9, 12fuccat 18014 . . 3 (𝜑𝑅 ∈ Cat)
1411, 2oveq12i 7441 . . . 4 (𝑅 ×c 𝑄) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
15 eqid 2736 . . . 4 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
1614, 15, 8, 9, 12fucofunca 49028 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ ((𝑅 ×c 𝑄) Func (𝐶 FuncCat 𝐸)))
17 precofval.k . . 3 (𝜑𝐾 = ((1st )‘𝐹))
1811fucbas 18004 . . 3 (𝐷 Func 𝐸) = (Base‘𝑅)
19 eqid 2736 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2011, 19fuchom 18005 . . 3 (𝐷 Nat 𝐸) = (Hom ‘𝑅)
21 eqid 2736 . . 3 (Id‘𝑄) = (Id‘𝑄)
221, 3, 10, 13, 16, 5, 17, 18, 20, 21tposcurf1 48972 . 2 (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))))⟩)
23 df-ov 7432 . . . . 5 (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹) = ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩)
24 eqidd 2737 . . . . . . . . . 10 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
258, 9, 12, 24fucoelvv 48988 . . . . . . . . 9 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
26 1st2nd2 8049 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2827adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
297adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
30 relfunc 17903 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
31 1st2ndbr 8063 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
3230, 31mpan 690 . . . . . . . 8 (𝑔 ∈ (𝐷 Func 𝐸) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
3332adantl 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
34 1st2nd 8060 . . . . . . . . . 10 ((Rel (𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
3530, 34mpan 690 . . . . . . . . 9 (𝑔 ∈ (𝐷 Func 𝐸) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
3635adantl 481 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
37 1st2nd 8060 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
384, 5, 37sylancr 587 . . . . . . . . 9 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
3938adantr 480 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4036, 39opeq12d 4879 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ⟨𝑔, 𝐹⟩ = ⟨⟨(1st𝑔), (2nd𝑔)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
4128, 29, 33, 40fuco11 48994 . . . . . 6 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩) = (⟨(1st𝑔), (2nd𝑔)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
4236, 39oveq12d 7447 . . . . . 6 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔func 𝐹) = (⟨(1st𝑔), (2nd𝑔)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
4341, 42eqtr4d 2779 . . . . 5 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩) = (𝑔func 𝐹))
4423, 43eqtrid 2788 . . . 4 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹) = (𝑔func 𝐹))
4544mpteq2dva 5240 . . 3 (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)))
46 eqid 2736 . . . . . . . . . 10 (Id‘𝐷) = (Id‘𝐷)
472, 21, 46, 5fucid 18015 . . . . . . . . 9 (𝜑 → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
4847ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
4948oveq2d 7445 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)) = (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝐷) ∘ (1st𝐹))))
5027ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
51 eqidd 2737 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ⟨𝑔, 𝐹⟩ = ⟨𝑔, 𝐹⟩)
52 eqidd 2737 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ⟨, 𝐹⟩ = ⟨, 𝐹⟩)
53 eqid 2736 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
542, 53, 46, 5fucidcl 18009 . . . . . . . . 9 (𝜑 → ((Id‘𝐷) ∘ (1st𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹))
5554ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ((Id‘𝐷) ∘ (1st𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹))
56 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)))
5750, 51, 52, 55, 56fuco22a 49018 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝐷) ∘ (1st𝐹))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)))))
58 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
60 eqid 2736 . . . . . . . . . . . 12 (Id‘𝐸) = (Id‘𝐸)
617ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
6232adantr 480 . . . . . . . . . . . . 13 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
6362ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
6558, 59, 46, 60, 61, 63, 64precofvallem 49034 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥))) ∧ ((1st𝑔)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸)))
6665simpld 494 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥))))
6766oveq2d 7445 . . . . . . . . 9 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥))) = ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥)))))
68 eqid 2736 . . . . . . . . . 10 (Hom ‘𝐸) = (Hom ‘𝐸)
6912ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
7065simprd 495 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑔)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸))
71 eqid 2736 . . . . . . . . . 10 (comp‘𝐸) = (comp‘𝐸)
72 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐷) = (Base‘𝐷)
73 simpllr 776 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)))
7473simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ∈ (𝐷 Func 𝐸))
75 1st2ndbr 8063 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (1st)(𝐷 Func 𝐸)(2nd))
7630, 74, 75sylancr 587 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st)(𝐷 Func 𝐸)(2nd))
7772, 59, 76funcf1 17907 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st):(Base‘𝐷)⟶(Base‘𝐸))
787ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
7958, 72, 78funcf1 17907 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
8079ffvelcdmda 7102 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
8177, 80ffvelcdmd 7103 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸))
8256adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)))
8319, 82nat1st2nd 17995 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐷 Nat 𝐸)⟨(1st), (2nd)⟩))
8419, 83, 72, 68, 80natcl 17997 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘((1st𝐹)‘𝑥)) ∈ (((1st𝑔)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st)‘((1st𝐹)‘𝑥))))
8559, 68, 60, 69, 70, 71, 81, 84catrid 17723 . . . . . . . . 9 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥)))) = (𝑎‘((1st𝐹)‘𝑥)))
8667, 85eqtrd 2776 . . . . . . . 8 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥))) = (𝑎‘((1st𝐹)‘𝑥)))
8786mpteq2dva 5240 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))
8849, 57, 873eqtrd 2780 . . . . . 6 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))
8988mpteq2dva 5240 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))
90893impb 1115 . . . 4 ((𝜑𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))
9190mpoeq3dva 7508 . . 3 (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))))
9245, 91opeq12d 4879 . 2 (𝜑 → ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))))⟩ = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
9322, 92eqtrd 2776 1 (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3479  cop 4630   class class class wbr 5141  cmpt 5223   × cxp 5681  ccom 5687  Rel wrel 5688  cfv 6559  (class class class)co 7429  cmpo 7431  1st c1st 8008  2nd c2nd 8009  Basecbs 17243  Hom chom 17304  compcco 17305  Catccat 17703  Idccid 17704   Func cfunc 17895  func ccofu 17897   Nat cnat 17985   FuncCat cfuc 17986   ×c cxpc 18209   curryF ccurf 18251  swapFcswapf 48938  F cfuco 48984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-cat 17707  df-cid 17708  df-func 17899  df-cofu 17901  df-nat 17987  df-fuc 17988  df-xpc 18213  df-curf 18255  df-swapf 48939  df-fuco 48985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator