Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  precofvalALT Structured version   Visualization version   GIF version

Theorem precofvalALT 49330
Description: Alternate proof of precofval 49329. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
precofval.q 𝑄 = (𝐶 FuncCat 𝐷)
precofval.r 𝑅 = (𝐷 FuncCat 𝐸)
precofval.o (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))
precofval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
precofval.e (𝜑𝐸 ∈ Cat)
precofval.k (𝜑𝐾 = ((1st )‘𝐹))
Assertion
Ref Expression
precofvalALT (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
Distinct variable groups:   𝐶,𝑎,𝑔,,𝑥   𝐷,𝑎,𝑔,,𝑥   𝐸,𝑎,𝑔,,𝑥   𝐹,𝑎,𝑔,,𝑥   𝑄,𝑎,𝑔,   𝑅,𝑎,𝑔,   𝜑,𝑎,𝑔,,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑅(𝑥)   𝐾(𝑥,𝑔,,𝑎)   (𝑥,𝑔,,𝑎)

Proof of Theorem precofvalALT
StepHypRef Expression
1 precofval.o . . 3 (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))
2 precofval.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
32fucbas 17901 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
4 relfunc 17800 . . . . . 6 Rel (𝐶 Func 𝐷)
5 precofval.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
6 1st2ndbr 8000 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
74, 5, 6sylancr 587 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
87funcrcl2 49041 . . . 4 (𝜑𝐶 ∈ Cat)
97funcrcl3 49042 . . . 4 (𝜑𝐷 ∈ Cat)
102, 8, 9fuccat 17911 . . 3 (𝜑𝑄 ∈ Cat)
11 precofval.r . . . 4 𝑅 = (𝐷 FuncCat 𝐸)
12 precofval.e . . . 4 (𝜑𝐸 ∈ Cat)
1311, 9, 12fuccat 17911 . . 3 (𝜑𝑅 ∈ Cat)
1411, 2oveq12i 7381 . . . 4 (𝑅 ×c 𝑄) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
15 eqid 2729 . . . 4 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
1614, 15, 8, 9, 12fucofunca 49322 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ ((𝑅 ×c 𝑄) Func (𝐶 FuncCat 𝐸)))
17 precofval.k . . 3 (𝜑𝐾 = ((1st )‘𝐹))
1811fucbas 17901 . . 3 (𝐷 Func 𝐸) = (Base‘𝑅)
19 eqid 2729 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2011, 19fuchom 17902 . . 3 (𝐷 Nat 𝐸) = (Hom ‘𝑅)
21 eqid 2729 . . 3 (Id‘𝑄) = (Id‘𝑄)
221, 3, 10, 13, 16, 5, 17, 18, 20, 21tposcurf1 49261 . 2 (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))))⟩)
23 df-ov 7372 . . . . 5 (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹) = ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩)
24 eqidd 2730 . . . . . . . . . 10 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
258, 9, 12, 24fucoelvv 49282 . . . . . . . . 9 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
26 1st2nd2 7986 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2827adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
297adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
30 relfunc 17800 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
31 1st2ndbr 8000 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
3230, 31mpan 690 . . . . . . . 8 (𝑔 ∈ (𝐷 Func 𝐸) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
3332adantl 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
34 1st2nd 7997 . . . . . . . . . 10 ((Rel (𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
3530, 34mpan 690 . . . . . . . . 9 (𝑔 ∈ (𝐷 Func 𝐸) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
3635adantl 481 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
37 1st2nd 7997 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
384, 5, 37sylancr 587 . . . . . . . . 9 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
3938adantr 480 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4036, 39opeq12d 4841 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ⟨𝑔, 𝐹⟩ = ⟨⟨(1st𝑔), (2nd𝑔)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
4128, 29, 33, 40fuco11 49288 . . . . . 6 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩) = (⟨(1st𝑔), (2nd𝑔)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
4236, 39oveq12d 7387 . . . . . 6 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔func 𝐹) = (⟨(1st𝑔), (2nd𝑔)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
4341, 42eqtr4d 2767 . . . . 5 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩) = (𝑔func 𝐹))
4423, 43eqtrid 2776 . . . 4 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹) = (𝑔func 𝐹))
4544mpteq2dva 5195 . . 3 (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)))
46 eqid 2729 . . . . . . . . . 10 (Id‘𝐷) = (Id‘𝐷)
472, 21, 46, 5fucid 17912 . . . . . . . . 9 (𝜑 → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
4847ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
4948oveq2d 7385 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)) = (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝐷) ∘ (1st𝐹))))
5027ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
51 eqidd 2730 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ⟨𝑔, 𝐹⟩ = ⟨𝑔, 𝐹⟩)
52 eqidd 2730 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ⟨, 𝐹⟩ = ⟨, 𝐹⟩)
53 eqid 2729 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
542, 53, 46, 5fucidcl 17906 . . . . . . . . 9 (𝜑 → ((Id‘𝐷) ∘ (1st𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹))
5554ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ((Id‘𝐷) ∘ (1st𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹))
56 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)))
5750, 51, 52, 55, 56fuco22a 49312 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝐷) ∘ (1st𝐹))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)))))
58 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
60 eqid 2729 . . . . . . . . . . . 12 (Id‘𝐸) = (Id‘𝐸)
617ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
6232adantr 480 . . . . . . . . . . . . 13 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
6362ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
6558, 59, 46, 60, 61, 63, 64precofvallem 49328 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥))) ∧ ((1st𝑔)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸)))
6665simpld 494 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥))))
6766oveq2d 7385 . . . . . . . . 9 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥))) = ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥)))))
68 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐸) = (Hom ‘𝐸)
6912ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
7065simprd 495 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑔)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸))
71 eqid 2729 . . . . . . . . . 10 (comp‘𝐸) = (comp‘𝐸)
72 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐷) = (Base‘𝐷)
73 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)))
7473simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ∈ (𝐷 Func 𝐸))
75 1st2ndbr 8000 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (1st)(𝐷 Func 𝐸)(2nd))
7630, 74, 75sylancr 587 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st)(𝐷 Func 𝐸)(2nd))
7772, 59, 76funcf1 17804 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st):(Base‘𝐷)⟶(Base‘𝐸))
787ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
7958, 72, 78funcf1 17804 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
8079ffvelcdmda 7038 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
8177, 80ffvelcdmd 7039 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸))
8256adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)))
8319, 82nat1st2nd 17892 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐷 Nat 𝐸)⟨(1st), (2nd)⟩))
8419, 83, 72, 68, 80natcl 17894 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘((1st𝐹)‘𝑥)) ∈ (((1st𝑔)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st)‘((1st𝐹)‘𝑥))))
8559, 68, 60, 69, 70, 71, 81, 84catrid 17621 . . . . . . . . 9 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥)))) = (𝑎‘((1st𝐹)‘𝑥)))
8667, 85eqtrd 2764 . . . . . . . 8 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥))) = (𝑎‘((1st𝐹)‘𝑥)))
8786mpteq2dva 5195 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))
8849, 57, 873eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))
8988mpteq2dva 5195 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))
90893impb 1114 . . . 4 ((𝜑𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))
9190mpoeq3dva 7446 . . 3 (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))))
9245, 91opeq12d 4841 . 2 (𝜑 → ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))))⟩ = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
9322, 92eqtrd 2764 1 (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  ccom 5635  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602   Func cfunc 17792  func ccofu 17794   Nat cnat 17882   FuncCat cfuc 17883   ×c cxpc 18105   curryF ccurf 18147   swapF cswapf 49221  F cfuco 49278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-cofu 17798  df-nat 17884  df-fuc 17885  df-xpc 18109  df-curf 18151  df-swapf 49222  df-fuco 49279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator