Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  precofvalALT Structured version   Visualization version   GIF version

Theorem precofvalALT 49373
Description: Alternate proof of precofval 49372. (Contributed by Zhi Wang, 11-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
precofval.q 𝑄 = (𝐶 FuncCat 𝐷)
precofval.r 𝑅 = (𝐷 FuncCat 𝐸)
precofval.o (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))
precofval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
precofval.e (𝜑𝐸 ∈ Cat)
precofval.k (𝜑𝐾 = ((1st )‘𝐹))
Assertion
Ref Expression
precofvalALT (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
Distinct variable groups:   𝐶,𝑎,𝑔,,𝑥   𝐷,𝑎,𝑔,,𝑥   𝐸,𝑎,𝑔,,𝑥   𝐹,𝑎,𝑔,,𝑥   𝑄,𝑎,𝑔,   𝑅,𝑎,𝑔,   𝜑,𝑎,𝑔,,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑅(𝑥)   𝐾(𝑥,𝑔,,𝑎)   (𝑥,𝑔,,𝑎)

Proof of Theorem precofvalALT
StepHypRef Expression
1 precofval.o . . 3 (𝜑 = (⟨𝑄, 𝑅⟩ curryF ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∘func (𝑄 swapF 𝑅))))
2 precofval.q . . . 4 𝑄 = (𝐶 FuncCat 𝐷)
32fucbas 17889 . . 3 (𝐶 Func 𝐷) = (Base‘𝑄)
4 relfunc 17788 . . . . . 6 Rel (𝐶 Func 𝐷)
5 precofval.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
6 1st2ndbr 7984 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
74, 5, 6sylancr 587 . . . . 5 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
87funcrcl2 49084 . . . 4 (𝜑𝐶 ∈ Cat)
97funcrcl3 49085 . . . 4 (𝜑𝐷 ∈ Cat)
102, 8, 9fuccat 17899 . . 3 (𝜑𝑄 ∈ Cat)
11 precofval.r . . . 4 𝑅 = (𝐷 FuncCat 𝐸)
12 precofval.e . . . 4 (𝜑𝐸 ∈ Cat)
1311, 9, 12fuccat 17899 . . 3 (𝜑𝑅 ∈ Cat)
1411, 2oveq12i 7365 . . . 4 (𝑅 ×c 𝑄) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
15 eqid 2729 . . . 4 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
1614, 15, 8, 9, 12fucofunca 49365 . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ ((𝑅 ×c 𝑄) Func (𝐶 FuncCat 𝐸)))
17 precofval.k . . 3 (𝜑𝐾 = ((1st )‘𝐹))
1811fucbas 17889 . . 3 (𝐷 Func 𝐸) = (Base‘𝑅)
19 eqid 2729 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
2011, 19fuchom 17890 . . 3 (𝐷 Nat 𝐸) = (Hom ‘𝑅)
21 eqid 2729 . . 3 (Id‘𝑄) = (Id‘𝑄)
221, 3, 10, 13, 16, 5, 17, 18, 20, 21tposcurf1 49304 . 2 (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))))⟩)
23 df-ov 7356 . . . . 5 (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹) = ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩)
24 eqidd 2730 . . . . . . . . . 10 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = (⟨𝐶, 𝐷⟩ ∘F 𝐸))
258, 9, 12, 24fucoelvv 49325 . . . . . . . . 9 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V))
26 1st2nd2 7970 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ ∘F 𝐸) ∈ (V × V) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
2827adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
297adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
30 relfunc 17788 . . . . . . . . 9 Rel (𝐷 Func 𝐸)
31 1st2ndbr 7984 . . . . . . . . 9 ((Rel (𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
3230, 31mpan 690 . . . . . . . 8 (𝑔 ∈ (𝐷 Func 𝐸) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
3332adantl 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
34 1st2nd 7981 . . . . . . . . . 10 ((Rel (𝐷 Func 𝐸) ∧ 𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
3530, 34mpan 690 . . . . . . . . 9 (𝑔 ∈ (𝐷 Func 𝐸) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
3635adantl 481 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
37 1st2nd 7981 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
384, 5, 37sylancr 587 . . . . . . . . 9 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
3938adantr 480 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4036, 39opeq12d 4835 . . . . . . 7 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ⟨𝑔, 𝐹⟩ = ⟨⟨(1st𝑔), (2nd𝑔)⟩, ⟨(1st𝐹), (2nd𝐹)⟩⟩)
4128, 29, 33, 40fuco11 49331 . . . . . 6 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩) = (⟨(1st𝑔), (2nd𝑔)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
4236, 39oveq12d 7371 . . . . . 6 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔func 𝐹) = (⟨(1st𝑔), (2nd𝑔)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
4341, 42eqtr4d 2767 . . . . 5 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))‘⟨𝑔, 𝐹⟩) = (𝑔func 𝐹))
4423, 43eqtrid 2776 . . . 4 ((𝜑𝑔 ∈ (𝐷 Func 𝐸)) → (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹) = (𝑔func 𝐹))
4544mpteq2dva 5188 . . 3 (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)) = (𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)))
46 eqid 2729 . . . . . . . . . 10 (Id‘𝐷) = (Id‘𝐷)
472, 21, 46, 5fucid 17900 . . . . . . . . 9 (𝜑 → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
4847ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ((Id‘𝑄)‘𝐹) = ((Id‘𝐷) ∘ (1st𝐹)))
4948oveq2d 7369 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)) = (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝐷) ∘ (1st𝐹))))
5027ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸)), (2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟩)
51 eqidd 2730 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ⟨𝑔, 𝐹⟩ = ⟨𝑔, 𝐹⟩)
52 eqidd 2730 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ⟨, 𝐹⟩ = ⟨, 𝐹⟩)
53 eqid 2729 . . . . . . . . . 10 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
542, 53, 46, 5fucidcl 17894 . . . . . . . . 9 (𝜑 → ((Id‘𝐷) ∘ (1st𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹))
5554ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → ((Id‘𝐷) ∘ (1st𝐹)) ∈ (𝐹(𝐶 Nat 𝐷)𝐹))
56 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)))
5750, 51, 52, 55, 56fuco22a 49355 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝐷) ∘ (1st𝐹))) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)))))
58 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
59 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐸) = (Base‘𝐸)
60 eqid 2729 . . . . . . . . . . . 12 (Id‘𝐸) = (Id‘𝐸)
617ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
6232adantr 480 . . . . . . . . . . . . 13 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
6362ad3antlr 731 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st𝑔)(𝐷 Func 𝐸)(2nd𝑔))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
6558, 59, 46, 60, 61, 63, 64precofvallem 49371 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥))) ∧ ((1st𝑔)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸)))
6665simpld 494 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)) = ((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥))))
6766oveq2d 7369 . . . . . . . . 9 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥))) = ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥)))))
68 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐸) = (Hom ‘𝐸)
6912ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
7065simprd 495 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑔)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸))
71 eqid 2729 . . . . . . . . . 10 (comp‘𝐸) = (comp‘𝐸)
72 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐷) = (Base‘𝐷)
73 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)))
7473simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ∈ (𝐷 Func 𝐸))
75 1st2ndbr 7984 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (1st)(𝐷 Func 𝐸)(2nd))
7630, 74, 75sylancr 587 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st)(𝐷 Func 𝐸)(2nd))
7772, 59, 76funcf1 17792 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (1st):(Base‘𝐷)⟶(Base‘𝐸))
787ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
7958, 72, 78funcf1 17792 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
8079ffvelcdmda 7022 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
8177, 80ffvelcdmd 7023 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st)‘((1st𝐹)‘𝑥)) ∈ (Base‘𝐸))
8256adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (𝑔(𝐷 Nat 𝐸)))
8319, 82nat1st2nd 17880 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑎 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐷 Nat 𝐸)⟨(1st), (2nd)⟩))
8419, 83, 72, 68, 80natcl 17882 . . . . . . . . . 10 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑎‘((1st𝐹)‘𝑥)) ∈ (((1st𝑔)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st)‘((1st𝐹)‘𝑥))))
8559, 68, 60, 69, 70, 71, 81, 84catrid 17609 . . . . . . . . 9 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((Id‘𝐸)‘((1st𝑔)‘((1st𝐹)‘𝑥)))) = (𝑎‘((1st𝐹)‘𝑥)))
8667, 85eqtrd 2764 . . . . . . . 8 ((((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥))) = (𝑎‘((1st𝐹)‘𝑥)))
8786mpteq2dva 5188 . . . . . . 7 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑎‘((1st𝐹)‘𝑥))(⟨((1st𝑔)‘((1st𝐹)‘𝑥)), ((1st𝑔)‘((1st𝐹)‘𝑥))⟩(comp‘𝐸)((1st)‘((1st𝐹)‘𝑥)))((((1st𝐹)‘𝑥)(2nd𝑔)((1st𝐹)‘𝑥))‘(((Id‘𝐷) ∘ (1st𝐹))‘𝑥)))) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))
8849, 57, 873eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) ∧ 𝑎 ∈ (𝑔(𝐷 Nat 𝐸))) → (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)) = (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))
8988mpteq2dva 5188 . . . . 5 ((𝜑 ∧ (𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸))) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))
90893impb 1114 . . . 4 ((𝜑𝑔 ∈ (𝐷 Func 𝐸) ∧ ∈ (𝐷 Func 𝐸)) → (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))) = (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))
9190mpoeq3dva 7430 . . 3 (𝜑 → (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹)))) = (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥))))))
9245, 91opeq12d 4835 . 2 (𝜑 → ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔(1st ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑎(⟨𝑔, 𝐹⟩(2nd ‘(⟨𝐶, 𝐷⟩ ∘F 𝐸))⟨, 𝐹⟩)((Id‘𝑄)‘𝐹))))⟩ = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
9322, 92eqtrd 2764 1 (𝜑𝐾 = ⟨(𝑔 ∈ (𝐷 Func 𝐸) ↦ (𝑔func 𝐹)), (𝑔 ∈ (𝐷 Func 𝐸), ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑔(𝐷 Nat 𝐸)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ (𝑎‘((1st𝐹)‘𝑥)))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585   class class class wbr 5095  cmpt 5176   × cxp 5621  ccom 5627  Rel wrel 5628  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Hom chom 17191  compcco 17192  Catccat 17589  Idccid 17590   Func cfunc 17780  func ccofu 17782   Nat cnat 17870   FuncCat cfuc 17871   ×c cxpc 18093   curryF ccurf 18135   swapF cswapf 49264  F cfuco 49321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-func 17784  df-cofu 17786  df-nat 17872  df-fuc 17873  df-xpc 18097  df-curf 18139  df-swapf 49265  df-fuco 49322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator