MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcid Structured version   Visualization version   GIF version

Theorem funcid 17585
Description: A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcid.b 𝐵 = (Base‘𝐷)
funcid.1 1 = (Id‘𝐷)
funcid.i 𝐼 = (Id‘𝐸)
funcid.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
funcid (𝜑 → ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋)))

Proof of Theorem funcid
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
21, 1oveq12d 7293 . . . 4 (𝑥 = 𝑋 → (𝑥𝐺𝑥) = (𝑋𝐺𝑋))
3 fveq2 6774 . . . 4 (𝑥 = 𝑋 → ( 1𝑥) = ( 1𝑋))
42, 3fveq12d 6781 . . 3 (𝑥 = 𝑋 → ((𝑥𝐺𝑥)‘( 1𝑥)) = ((𝑋𝐺𝑋)‘( 1𝑋)))
5 2fveq3 6779 . . 3 (𝑥 = 𝑋 → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑋)))
64, 5eqeq12d 2754 . 2 (𝑥 = 𝑋 → (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ↔ ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋))))
7 funcid.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 funcid.b . . . . . 6 𝐵 = (Base‘𝐷)
9 eqid 2738 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
10 eqid 2738 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
11 eqid 2738 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
12 funcid.1 . . . . . 6 1 = (Id‘𝐷)
13 funcid.i . . . . . 6 𝐼 = (Id‘𝐸)
14 eqid 2738 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
15 eqid 2738 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
16 df-br 5075 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
177, 16sylib 217 . . . . . . . 8 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
18 funcrcl 17578 . . . . . . . 8 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1917, 18syl 17 . . . . . . 7 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
2019simpld 495 . . . . . 6 (𝜑𝐷 ∈ Cat)
2119simprd 496 . . . . . 6 (𝜑𝐸 ∈ Cat)
228, 9, 10, 11, 12, 13, 14, 15, 20, 21isfunc 17579 . . . . 5 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
237, 22mpbid 231 . . . 4 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
2423simp3d 1143 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
25 simpl 483 . . . 4 ((((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
2625ralimi 3087 . . 3 (∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ∀𝑥𝐵 ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
2724, 26syl 17 . 2 (𝜑 → ∀𝑥𝐵 ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
28 funcid.x . 2 (𝜑𝑋𝐵)
296, 27, 28rspcdva 3562 1 (𝜑 → ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374   Func cfunc 17569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-ixp 8686  df-func 17573
This theorem is referenced by:  funcsect  17587  funcoppc  17590  cofucl  17603  funcres  17611  fthsect  17641  catcisolem  17825  prfcl  17920  evlfcl  17940  curf1cl  17946  curfcl  17950  curfuncf  17956  yonedainv  17999
  Copyright terms: Public domain W3C validator