Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . 5
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
2 | 1, 1 | oveq12d 7293 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑥) = (𝑋𝐺𝑋)) |
3 | | fveq2 6774 |
. . . 4
⊢ (𝑥 = 𝑋 → ( 1 ‘𝑥) = ( 1 ‘𝑋)) |
4 | 2, 3 | fveq12d 6781 |
. . 3
⊢ (𝑥 = 𝑋 → ((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = ((𝑋𝐺𝑋)‘( 1 ‘𝑋))) |
5 | | 2fveq3 6779 |
. . 3
⊢ (𝑥 = 𝑋 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑋))) |
6 | 4, 5 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝑋 → (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ↔ ((𝑋𝐺𝑋)‘( 1 ‘𝑋)) = (𝐼‘(𝐹‘𝑋)))) |
7 | | funcid.f |
. . . . 5
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
8 | | funcid.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐷) |
9 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐸) =
(Base‘𝐸) |
10 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
11 | | eqid 2738 |
. . . . . 6
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
12 | | funcid.1 |
. . . . . 6
⊢ 1 =
(Id‘𝐷) |
13 | | funcid.i |
. . . . . 6
⊢ 𝐼 = (Id‘𝐸) |
14 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
15 | | eqid 2738 |
. . . . . 6
⊢
(comp‘𝐸) =
(comp‘𝐸) |
16 | | df-br 5075 |
. . . . . . . . 9
⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
17 | 7, 16 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
18 | | funcrcl 17578 |
. . . . . . . 8
⊢
(〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
20 | 19 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
21 | 19 | simprd 496 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ Cat) |
22 | 8, 9, 10, 11, 12, 13, 14, 15, 20, 21 | isfunc 17579 |
. . . . 5
⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
23 | 7, 22 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom
‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
24 | 23 | simp3d 1143 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))) |
25 | | simpl 483 |
. . . 4
⊢ ((((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
26 | 25 | ralimi 3087 |
. . 3
⊢
(∀𝑥 ∈
𝐵 (((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))) → ∀𝑥 ∈ 𝐵 ((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
27 | 24, 26 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑥𝐺𝑥)‘( 1 ‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
28 | | funcid.x |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
29 | 6, 27, 28 | rspcdva 3562 |
1
⊢ (𝜑 → ((𝑋𝐺𝑋)‘( 1 ‘𝑋)) = (𝐼‘(𝐹‘𝑋))) |