Step | Hyp | Ref
| Expression |
1 | | breq2 5152 |
. . . 4
⊢ (𝑧 = 𝑥𝑂 → ( 0s
<s 𝑧 ↔
0s <s 𝑥𝑂)) |
2 | | oveq1 7419 |
. . . . . 6
⊢ (𝑧 = 𝑥𝑂 → (𝑧 ·s 𝑦) = (𝑥𝑂 ·s
𝑦)) |
3 | 2 | eqeq1d 2733 |
. . . . 5
⊢ (𝑧 = 𝑥𝑂 → ((𝑧 ·s 𝑦) = 1s ↔ (𝑥𝑂
·s 𝑦) =
1s )) |
4 | 3 | rexbidv 3177 |
. . . 4
⊢ (𝑧 = 𝑥𝑂 → (∃𝑦 ∈
No (𝑧
·s 𝑦) =
1s ↔ ∃𝑦 ∈ No
(𝑥𝑂
·s 𝑦) =
1s )) |
5 | 1, 4 | imbi12d 344 |
. . 3
⊢ (𝑧 = 𝑥𝑂 → (( 0s
<s 𝑧 → ∃𝑦 ∈
No (𝑧
·s 𝑦) =
1s ) ↔ ( 0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s
))) |
6 | | breq2 5152 |
. . . 4
⊢ (𝑧 = 𝐴 → ( 0s <s 𝑧 ↔ 0s <s
𝐴)) |
7 | | oveq1 7419 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝑧 ·s 𝑦) = (𝐴 ·s 𝑦)) |
8 | 7 | eqeq1d 2733 |
. . . . 5
⊢ (𝑧 = 𝐴 → ((𝑧 ·s 𝑦) = 1s ↔ (𝐴 ·s 𝑦) = 1s )) |
9 | 8 | rexbidv 3177 |
. . . 4
⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ No
(𝑧 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝐴 ·s 𝑦) = 1s )) |
10 | 6, 9 | imbi12d 344 |
. . 3
⊢ (𝑧 = 𝐴 → (( 0s <s 𝑧 → ∃𝑦 ∈
No (𝑧
·s 𝑦) =
1s ) ↔ ( 0s <s 𝐴 → ∃𝑦 ∈ No
(𝐴 ·s
𝑦) = 1s
))) |
11 | | eqid 2731 |
. . . . . . . . 9
⊢
rec((𝑞 ∈ V
↦ ⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉) = rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉) |
12 | 11 | precsexlemcbv 27906 |
. . . . . . . 8
⊢
rec((𝑞 ∈ V
↦ ⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉) = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑧)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝑧)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝑧) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝑧)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝑧) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝑧)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝑧)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝑧)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
13 | | eqid 2731 |
. . . . . . . 8
⊢
(1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) = (1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) |
14 | | eqid 2731 |
. . . . . . . 8
⊢
(2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) = (2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) |
15 | | simp1 1135 |
. . . . . . . 8
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ 𝑧 ∈ No ) |
16 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ 0s <s 𝑧) |
17 | | simp3 1137 |
. . . . . . . 8
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
18 | 12, 13, 14, 15, 16, 17 | precsexlem10 27916 |
. . . . . . 7
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ ∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) <<s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) |
19 | 18 | scutcld 27556 |
. . . . . 6
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ (∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) ∈ No ) |
20 | | eqid 2731 |
. . . . . . 7
⊢ (∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) = (∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) |
21 | 12, 13, 14, 15, 16, 17, 20 | precsexlem11 27917 |
. . . . . 6
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ (𝑧
·s (∪ ((1st ∘
rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω))) = 1s
) |
22 | | oveq2 7420 |
. . . . . . . 8
⊢ (𝑦 = (∪
((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) → (𝑧 ·s 𝑦) = (𝑧 ·s (∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)))) |
23 | 22 | eqeq1d 2733 |
. . . . . . 7
⊢ (𝑦 = (∪
((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) → ((𝑧 ·s 𝑦) = 1s ↔ (𝑧 ·s (∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω))) = 1s
)) |
24 | 23 | rspcev 3612 |
. . . . . 6
⊢ (((∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω)) ∈ No ∧ (𝑧 ·s (∪ ((1st ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω) |s ∪ ((2nd ∘ rec((𝑞 ∈ V ↦
⦋(1st ‘𝑞) / 𝑚⦌⦋(2nd
‘𝑞) / 𝑠⦌〈(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑤))
/su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈
{𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑡))
/su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s
𝑢}∃𝑤 ∈ 𝑚 𝑏 = (( 1s +s ((𝑧𝐿
-s 𝑧)
·s 𝑤))
/su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R
‘𝑧)∃𝑡 ∈ 𝑠 𝑏 = (( 1s +s ((𝑧𝑅
-s 𝑧)
·s 𝑡))
/su 𝑧𝑅)}))〉), 〈{
0s }, ∅〉)) “ ω))) = 1s ) →
∃𝑦 ∈ No (𝑧 ·s 𝑦) = 1s ) |
25 | 19, 21, 24 | syl2anc 583 |
. . . . 5
⊢ ((𝑧 ∈
No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ))
→ ∃𝑦 ∈
No (𝑧 ·s 𝑦) = 1s ) |
26 | 25 | 3exp 1118 |
. . . 4
⊢ (𝑧 ∈
No → ( 0s <s 𝑧 → (∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ) →
∃𝑦 ∈ No (𝑧 ·s 𝑦) = 1s ))) |
27 | 26 | com23 86 |
. . 3
⊢ (𝑧 ∈
No → (∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ) →
( 0s <s 𝑧
→ ∃𝑦 ∈
No (𝑧 ·s 𝑦) = 1s ))) |
28 | 5, 10, 27 | noinds 27682 |
. 2
⊢ (𝐴 ∈
No → ( 0s <s 𝐴 → ∃𝑦 ∈ No
(𝐴 ·s
𝑦) = 1s
)) |
29 | 28 | imp 406 |
1
⊢ ((𝐴 ∈
No ∧ 0s <s 𝐴) → ∃𝑦 ∈ No
(𝐴 ·s
𝑦) = 1s
) |