MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsex Structured version   Visualization version   GIF version

Theorem precsex 28177
Description: Every positive surreal has a reciprocal. Theorem 10(iv) of [Conway] p. 21. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
precsex ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑦 No (𝐴 ·s 𝑦) = 1s )
Distinct variable group:   𝑦,𝐴

Proof of Theorem precsex
Dummy variables 𝑎 𝑏 𝑥 𝑥𝑂 𝑥𝐿 𝑥𝑅 𝑦𝐿 𝑦𝑅 𝑧 𝑧𝐿 𝑧𝑅 𝑙 𝑚 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5128 . . . 4 (𝑧 = 𝑥𝑂 → ( 0s <s 𝑧 ↔ 0s <s 𝑥𝑂))
2 oveq1 7417 . . . . . 6 (𝑧 = 𝑥𝑂 → (𝑧 ·s 𝑦) = (𝑥𝑂 ·s 𝑦))
32eqeq1d 2738 . . . . 5 (𝑧 = 𝑥𝑂 → ((𝑧 ·s 𝑦) = 1s ↔ (𝑥𝑂 ·s 𝑦) = 1s ))
43rexbidv 3165 . . . 4 (𝑧 = 𝑥𝑂 → (∃𝑦 No (𝑧 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
51, 4imbi12d 344 . . 3 (𝑧 = 𝑥𝑂 → (( 0s <s 𝑧 → ∃𝑦 No (𝑧 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )))
6 breq2 5128 . . . 4 (𝑧 = 𝐴 → ( 0s <s 𝑧 ↔ 0s <s 𝐴))
7 oveq1 7417 . . . . . 6 (𝑧 = 𝐴 → (𝑧 ·s 𝑦) = (𝐴 ·s 𝑦))
87eqeq1d 2738 . . . . 5 (𝑧 = 𝐴 → ((𝑧 ·s 𝑦) = 1s ↔ (𝐴 ·s 𝑦) = 1s ))
98rexbidv 3165 . . . 4 (𝑧 = 𝐴 → (∃𝑦 No (𝑧 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝐴 ·s 𝑦) = 1s ))
106, 9imbi12d 344 . . 3 (𝑧 = 𝐴 → (( 0s <s 𝑧 → ∃𝑦 No (𝑧 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝐴 → ∃𝑦 No (𝐴 ·s 𝑦) = 1s )))
11 eqid 2736 . . . . . . . . 9 rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩) = rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
1211precsexlemcbv 28165 . . . . . . . 8 rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩) = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑧)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝑧) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝑧) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝑧) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝑧) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝑧) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑧)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝑧) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
13 eqid 2736 . . . . . . . 8 (1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) = (1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
14 eqid 2736 . . . . . . . 8 (2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) = (2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
15 simp1 1136 . . . . . . . 8 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → 𝑧 No )
16 simp2 1137 . . . . . . . 8 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → 0s <s 𝑧)
17 simp3 1138 . . . . . . . 8 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1812, 13, 14, 15, 16, 17precsexlem10 28175 . . . . . . 7 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) <<s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))
1918scutcld 27772 . . . . . 6 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) ∈ No )
20 eqid 2736 . . . . . . 7 ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) = ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))
2112, 13, 14, 15, 16, 17, 20precsexlem11 28176 . . . . . 6 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))) = 1s )
22 oveq2 7418 . . . . . . . 8 (𝑦 = ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) → (𝑧 ·s 𝑦) = (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))))
2322eqeq1d 2738 . . . . . . 7 (𝑦 = ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) → ((𝑧 ·s 𝑦) = 1s ↔ (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))) = 1s ))
2423rspcev 3606 . . . . . 6 ((( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) ∈ No ∧ (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))) = 1s ) → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )
2519, 21, 24syl2anc 584 . . . . 5 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )
26253exp 1119 . . . 4 (𝑧 No → ( 0s <s 𝑧 → (∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )))
2726com23 86 . . 3 (𝑧 No → (∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) → ( 0s <s 𝑧 → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )))
285, 10, 27noinds 27909 . 2 (𝐴 No → ( 0s <s 𝐴 → ∃𝑦 No (𝐴 ·s 𝑦) = 1s ))
2928imp 406 1 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑦 No (𝐴 ·s 𝑦) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  csb 3879  cun 3929  c0 4313  {csn 4606  cop 4612   cuni 4888   class class class wbr 5124  cmpt 5206  cima 5662  ccom 5663  cfv 6536  (class class class)co 7410  ωcom 7866  1st c1st 7991  2nd c2nd 7992  reccrdg 8428   No csur 27608   <s cslt 27609   |s cscut 27751   0s c0s 27791   1s c1s 27792   L cleft 27810   R cright 27811   +s cadds 27923   -s csubs 27983   ·s cmuls 28066   /su cdivs 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-dc 10465
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-divs 28148
This theorem is referenced by:  recsex  28178
  Copyright terms: Public domain W3C validator