MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsex Structured version   Visualization version   GIF version

Theorem precsex 28162
Description: Every positive surreal has a reciprocal. Theorem 10(iv) of [Conway] p. 21. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
precsex ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑦 No (𝐴 ·s 𝑦) = 1s )
Distinct variable group:   𝑦,𝐴

Proof of Theorem precsex
Dummy variables 𝑎 𝑏 𝑥 𝑥𝑂 𝑥𝐿 𝑥𝑅 𝑦𝐿 𝑦𝑅 𝑧 𝑧𝐿 𝑧𝑅 𝑙 𝑚 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5106 . . . 4 (𝑧 = 𝑥𝑂 → ( 0s <s 𝑧 ↔ 0s <s 𝑥𝑂))
2 oveq1 7377 . . . . . 6 (𝑧 = 𝑥𝑂 → (𝑧 ·s 𝑦) = (𝑥𝑂 ·s 𝑦))
32eqeq1d 2731 . . . . 5 (𝑧 = 𝑥𝑂 → ((𝑧 ·s 𝑦) = 1s ↔ (𝑥𝑂 ·s 𝑦) = 1s ))
43rexbidv 3157 . . . 4 (𝑧 = 𝑥𝑂 → (∃𝑦 No (𝑧 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
51, 4imbi12d 344 . . 3 (𝑧 = 𝑥𝑂 → (( 0s <s 𝑧 → ∃𝑦 No (𝑧 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )))
6 breq2 5106 . . . 4 (𝑧 = 𝐴 → ( 0s <s 𝑧 ↔ 0s <s 𝐴))
7 oveq1 7377 . . . . . 6 (𝑧 = 𝐴 → (𝑧 ·s 𝑦) = (𝐴 ·s 𝑦))
87eqeq1d 2731 . . . . 5 (𝑧 = 𝐴 → ((𝑧 ·s 𝑦) = 1s ↔ (𝐴 ·s 𝑦) = 1s ))
98rexbidv 3157 . . . 4 (𝑧 = 𝐴 → (∃𝑦 No (𝑧 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝐴 ·s 𝑦) = 1s ))
106, 9imbi12d 344 . . 3 (𝑧 = 𝐴 → (( 0s <s 𝑧 → ∃𝑦 No (𝑧 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝐴 → ∃𝑦 No (𝐴 ·s 𝑦) = 1s )))
11 eqid 2729 . . . . . . . . 9 rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩) = rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
1211precsexlemcbv 28150 . . . . . . . 8 rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩) = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑧)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝑧) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝑧) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝑧) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝑧) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝑧) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑧)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝑧) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
13 eqid 2729 . . . . . . . 8 (1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) = (1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
14 eqid 2729 . . . . . . . 8 (2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) = (2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
15 simp1 1136 . . . . . . . 8 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → 𝑧 No )
16 simp2 1137 . . . . . . . 8 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → 0s <s 𝑧)
17 simp3 1138 . . . . . . . 8 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
1812, 13, 14, 15, 16, 17precsexlem10 28160 . . . . . . 7 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) <<s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))
1918scutcld 27751 . . . . . 6 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) ∈ No )
20 eqid 2729 . . . . . . 7 ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) = ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))
2112, 13, 14, 15, 16, 17, 20precsexlem11 28161 . . . . . 6 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))) = 1s )
22 oveq2 7378 . . . . . . . 8 (𝑦 = ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) → (𝑧 ·s 𝑦) = (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))))
2322eqeq1d 2731 . . . . . . 7 (𝑦 = ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) → ((𝑧 ·s 𝑦) = 1s ↔ (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))) = 1s ))
2423rspcev 3585 . . . . . 6 ((( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω)) ∈ No ∧ (𝑧 ·s ( ((1st ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω) |s ((2nd ∘ rec((𝑞 ∈ V ↦ (1st𝑞) / 𝑚(2nd𝑞) / 𝑠⟨(𝑚 ∪ ({𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑤)) /su 𝑧𝑅)} ∪ {𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑡)) /su 𝑧𝐿)})), (𝑠 ∪ ({𝑏 ∣ ∃𝑧𝐿 ∈ {𝑢 ∈ ( L ‘𝑧) ∣ 0s <s 𝑢}∃𝑤𝑚 𝑏 = (( 1s +s ((𝑧𝐿 -s 𝑧) ·s 𝑤)) /su 𝑧𝐿)} ∪ {𝑏 ∣ ∃𝑧𝑅 ∈ ( R ‘𝑧)∃𝑡𝑠 𝑏 = (( 1s +s ((𝑧𝑅 -s 𝑧) ·s 𝑡)) /su 𝑧𝑅)}))⟩), ⟨{ 0s }, ∅⟩)) “ ω))) = 1s ) → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )
2519, 21, 24syl2anc 584 . . . . 5 ((𝑧 No ∧ 0s <s 𝑧 ∧ ∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s )) → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )
26253exp 1119 . . . 4 (𝑧 No → ( 0s <s 𝑧 → (∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )))
2726com23 86 . . 3 (𝑧 No → (∀𝑥𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) → ( 0s <s 𝑧 → ∃𝑦 No (𝑧 ·s 𝑦) = 1s )))
285, 10, 27noinds 27894 . 2 (𝐴 No → ( 0s <s 𝐴 → ∃𝑦 No (𝐴 ·s 𝑦) = 1s ))
2928imp 406 1 ((𝐴 No ∧ 0s <s 𝐴) → ∃𝑦 No (𝐴 ·s 𝑦) = 1s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  csb 3859  cun 3909  c0 4292  {csn 4585  cop 4591   cuni 4867   class class class wbr 5102  cmpt 5183  cima 5634  ccom 5635  cfv 6500  (class class class)co 7370  ωcom 7823  1st c1st 7946  2nd c2nd 7947  reccrdg 8355   No csur 27586   <s cslt 27587   |s cscut 27730   0s c0s 27773   1s c1s 27774   L cleft 27792   R cright 27793   +s cadds 27908   -s csubs 27968   ·s cmuls 28051   /su cdivs 28132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-dc 10378
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-nadd 8608  df-no 27589  df-slt 27590  df-bday 27591  df-sle 27692  df-sslt 27729  df-scut 27731  df-0s 27775  df-1s 27776  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-norec2 27898  df-adds 27909  df-negs 27969  df-subs 27970  df-muls 28052  df-divs 28133
This theorem is referenced by:  recsex  28163
  Copyright terms: Public domain W3C validator