![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divs1 | Structured version Visualization version GIF version |
Description: A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
divs1 | ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulslid 28186 | . 2 ⊢ (𝐴 ∈ No → ( 1s ·s 𝐴) = 𝐴) | |
2 | 1sno 27890 | . . . . 5 ⊢ 1s ∈ No | |
3 | 0slt1s 27892 | . . . . . 6 ⊢ 0s <s 1s | |
4 | sgt0ne0 27897 | . . . . . 6 ⊢ ( 0s <s 1s → 1s ≠ 0s ) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ 1s ≠ 0s |
6 | 2, 5 | pm3.2i 470 | . . . 4 ⊢ ( 1s ∈ No ∧ 1s ≠ 0s ) |
7 | mulslid 28186 | . . . . . . 7 ⊢ ( 1s ∈ No → ( 1s ·s 1s ) = 1s ) | |
8 | 2, 7 | ax-mp 5 | . . . . . 6 ⊢ ( 1s ·s 1s ) = 1s |
9 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑥 = 1s → ( 1s ·s 𝑥) = ( 1s ·s 1s )) | |
10 | 9 | eqeq1d 2742 | . . . . . . 7 ⊢ (𝑥 = 1s → (( 1s ·s 𝑥) = 1s ↔ ( 1s ·s 1s ) = 1s )) |
11 | 10 | rspcev 3635 | . . . . . 6 ⊢ (( 1s ∈ No ∧ ( 1s ·s 1s ) = 1s ) → ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s ) |
12 | 2, 8, 11 | mp2an 691 | . . . . 5 ⊢ ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s |
13 | divsmulw 28236 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ∈ No ∧ ( 1s ∈ No ∧ 1s ≠ 0s )) ∧ ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s ) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) | |
14 | 12, 13 | mpan2 690 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ∧ ( 1s ∈ No ∧ 1s ≠ 0s )) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
15 | 6, 14 | mp3an3 1450 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
16 | 15 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
17 | 1, 16 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 class class class wbr 5166 (class class class)co 7448 No csur 27702 <s cslt 27703 0s c0s 27885 1s c1s 27886 ·s cmuls 28150 /su cdivs 28231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-subs 28072 df-muls 28151 df-divs 28232 |
This theorem is referenced by: cutpw2 28435 pw2bday 28436 pw2cut 28438 zzs12 28441 zs12bday 28442 remulscllem1 28450 |
Copyright terms: Public domain | W3C validator |