| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divs1 | Structured version Visualization version GIF version | ||
| Description: A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025.) |
| Ref | Expression |
|---|---|
| divs1 | ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulslid 28091 | . 2 ⊢ (𝐴 ∈ No → ( 1s ·s 𝐴) = 𝐴) | |
| 2 | 1sno 27781 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | 1sne0s 27791 | . . . . 5 ⊢ 1s ≠ 0s | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ ( 1s ∈ No ∧ 1s ≠ 0s ) |
| 5 | mulslid 28091 | . . . . . . 7 ⊢ ( 1s ∈ No → ( 1s ·s 1s ) = 1s ) | |
| 6 | 2, 5 | ax-mp 5 | . . . . . 6 ⊢ ( 1s ·s 1s ) = 1s |
| 7 | oveq2 7363 | . . . . . . . 8 ⊢ (𝑥 = 1s → ( 1s ·s 𝑥) = ( 1s ·s 1s )) | |
| 8 | 7 | eqeq1d 2735 | . . . . . . 7 ⊢ (𝑥 = 1s → (( 1s ·s 𝑥) = 1s ↔ ( 1s ·s 1s ) = 1s )) |
| 9 | 8 | rspcev 3574 | . . . . . 6 ⊢ (( 1s ∈ No ∧ ( 1s ·s 1s ) = 1s ) → ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s ) |
| 10 | 2, 6, 9 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s |
| 11 | divsmulw 28142 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ∈ No ∧ ( 1s ∈ No ∧ 1s ≠ 0s )) ∧ ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s ) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) | |
| 12 | 10, 11 | mpan2 691 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ∧ ( 1s ∈ No ∧ 1s ≠ 0s )) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
| 13 | 4, 12 | mp3an3 1452 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
| 14 | 13 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
| 15 | 1, 14 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 (class class class)co 7355 No csur 27588 0s c0s 27776 1s c1s 27777 ·s cmuls 28055 /su cdivs 28136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 df-muls 28056 df-divs 28137 |
| This theorem is referenced by: pw2cut 28390 pw2cut2 28392 zzs12 28395 zs12zodd 28402 zs12bday 28404 remulscllem1 28412 |
| Copyright terms: Public domain | W3C validator |