![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divs1 | Structured version Visualization version GIF version |
Description: A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025.) |
Ref | Expression |
---|---|
divs1 | ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulslid 27946 | . 2 ⊢ (𝐴 ∈ No → ( 1s ·s 𝐴) = 𝐴) | |
2 | 1sno 27664 | . . . . 5 ⊢ 1s ∈ No | |
3 | 0slt1s 27666 | . . . . . 6 ⊢ 0s <s 1s | |
4 | sgt0ne0 27671 | . . . . . 6 ⊢ ( 0s <s 1s → 1s ≠ 0s ) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ 1s ≠ 0s |
6 | 2, 5 | pm3.2i 470 | . . . 4 ⊢ ( 1s ∈ No ∧ 1s ≠ 0s ) |
7 | mulslid 27946 | . . . . . . 7 ⊢ ( 1s ∈ No → ( 1s ·s 1s ) = 1s ) | |
8 | 2, 7 | ax-mp 5 | . . . . . 6 ⊢ ( 1s ·s 1s ) = 1s |
9 | oveq2 7409 | . . . . . . . 8 ⊢ (𝑥 = 1s → ( 1s ·s 𝑥) = ( 1s ·s 1s )) | |
10 | 9 | eqeq1d 2726 | . . . . . . 7 ⊢ (𝑥 = 1s → (( 1s ·s 𝑥) = 1s ↔ ( 1s ·s 1s ) = 1s )) |
11 | 10 | rspcev 3604 | . . . . . 6 ⊢ (( 1s ∈ No ∧ ( 1s ·s 1s ) = 1s ) → ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s ) |
12 | 2, 8, 11 | mp2an 689 | . . . . 5 ⊢ ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s |
13 | divsmulw 27996 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐴 ∈ No ∧ ( 1s ∈ No ∧ 1s ≠ 0s )) ∧ ∃𝑥 ∈ No ( 1s ·s 𝑥) = 1s ) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) | |
14 | 12, 13 | mpan2 688 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ∧ ( 1s ∈ No ∧ 1s ≠ 0s )) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
15 | 6, 14 | mp3an3 1446 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐴 ∈ No ) → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
16 | 15 | anidms 566 | . 2 ⊢ (𝐴 ∈ No → ((𝐴 /su 1s ) = 𝐴 ↔ ( 1s ·s 𝐴) = 𝐴)) |
17 | 1, 16 | mpbird 257 | 1 ⊢ (𝐴 ∈ No → (𝐴 /su 1s ) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 class class class wbr 5138 (class class class)co 7401 No csur 27477 <s cslt 27478 0s c0s 27659 1s c1s 27660 ·s cmuls 27910 /su cdivs 27991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-1o 8461 df-2o 8462 df-nadd 8660 df-no 27480 df-slt 27481 df-bday 27482 df-sle 27582 df-sslt 27618 df-scut 27620 df-0s 27661 df-1s 27662 df-made 27678 df-old 27679 df-left 27681 df-right 27682 df-norec 27759 df-norec2 27770 df-adds 27781 df-negs 27838 df-subs 27839 df-muls 27911 df-divs 27992 |
This theorem is referenced by: remulscllem1 28099 |
Copyright terms: Public domain | W3C validator |