Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polssatN Structured version   Visualization version   GIF version

Theorem polssatN 37901
Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polssatN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)

Proof of Theorem polssatN
StepHypRef Expression
1 polssat.a . . 3 𝐴 = (Atoms‘𝐾)
2 eqid 2739 . . 3 (PSubSp‘𝐾) = (PSubSp‘𝐾)
3 polssat.p . . 3 = (⊥𝑃𝐾)
41, 2, 3polsubN 37900 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubSp‘𝐾))
51, 2psubssat 37747 . 2 ((𝐾 ∈ HL ∧ ( 𝑋) ∈ (PSubSp‘𝐾)) → ( 𝑋) ⊆ 𝐴)
64, 5syldan 590 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wss 3891  cfv 6430  Atomscatm 37256  HLchlt 37343  PSubSpcpsubsp 37489  𝑃cpolN 37895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-riotaBAD 36946
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-undef 8073  df-proset 17994  df-poset 18012  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p1 18125  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-psubsp 37496  df-pmap 37497  df-polarityN 37896
This theorem is referenced by:  2polcon4bN  37911  polcon2N  37912  pclss2polN  37914  2pmaplubN  37919  paddunN  37920  ispsubcl2N  37940  poml5N  37947  osumcllem1N  37949  osumcllem2N  37950  osumcllem3N  37951  osumcllem9N  37957  osumcllem11N  37959  pexmidN  37962  pexmidlem2N  37964  pexmidlem3N  37965  pexmidlem7N  37969  pexmidlem8N  37970
  Copyright terms: Public domain W3C validator