Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polssatN Structured version   Visualization version   GIF version

Theorem polssatN 37048
Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polssatN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)

Proof of Theorem polssatN
StepHypRef Expression
1 polssat.a . . 3 𝐴 = (Atoms‘𝐾)
2 eqid 2824 . . 3 (PSubSp‘𝐾) = (PSubSp‘𝐾)
3 polssat.p . . 3 = (⊥𝑃𝐾)
41, 2, 3polsubN 37047 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubSp‘𝐾))
51, 2psubssat 36894 . 2 ((𝐾 ∈ HL ∧ ( 𝑋) ∈ (PSubSp‘𝐾)) → ( 𝑋) ⊆ 𝐴)
64, 5syldan 593 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wss 3939  cfv 6358  Atomscatm 36403  HLchlt 36490  PSubSpcpsubsp 36636  𝑃cpolN 37042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-riotaBAD 36093
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-undef 7942  df-proset 17541  df-poset 17559  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-psubsp 36643  df-pmap 36644  df-polarityN 37043
This theorem is referenced by:  2polcon4bN  37058  polcon2N  37059  pclss2polN  37061  2pmaplubN  37066  paddunN  37067  ispsubcl2N  37087  poml5N  37094  osumcllem1N  37096  osumcllem2N  37097  osumcllem3N  37098  osumcllem9N  37104  osumcllem11N  37106  pexmidN  37109  pexmidlem2N  37111  pexmidlem3N  37112  pexmidlem7N  37116  pexmidlem8N  37117
  Copyright terms: Public domain W3C validator