| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polssatN | Structured version Visualization version GIF version | ||
| Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polssatN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 3 | polssat.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 1, 2, 3 | polsubN 39901 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) |
| 5 | 1, 2 | psubssat 39748 | . 2 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 4, 5 | syldan 591 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Atomscatm 39256 HLchlt 39343 PSubSpcpsubsp 39490 ⊥𝑃cpolN 39896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-psubsp 39497 df-pmap 39498 df-polarityN 39897 |
| This theorem is referenced by: 2polcon4bN 39912 polcon2N 39913 pclss2polN 39915 2pmaplubN 39920 paddunN 39921 ispsubcl2N 39941 poml5N 39948 osumcllem1N 39950 osumcllem2N 39951 osumcllem3N 39952 osumcllem9N 39958 osumcllem11N 39960 pexmidN 39963 pexmidlem2N 39965 pexmidlem3N 39966 pexmidlem7N 39970 pexmidlem8N 39971 |
| Copyright terms: Public domain | W3C validator |