Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polssatN | Structured version Visualization version GIF version |
Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polssatN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
3 | polssat.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
4 | 1, 2, 3 | polsubN 37909 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) |
5 | 1, 2 | psubssat 37756 | . 2 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
6 | 4, 5 | syldan 591 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6431 Atomscatm 37265 HLchlt 37352 PSubSpcpsubsp 37498 ⊥𝑃cpolN 37904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-riotaBAD 36955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-undef 8074 df-proset 18003 df-poset 18021 df-lub 18054 df-glb 18055 df-join 18056 df-meet 18057 df-p1 18134 df-lat 18140 df-clat 18207 df-oposet 37178 df-ol 37180 df-oml 37181 df-ats 37269 df-atl 37300 df-cvlat 37324 df-hlat 37353 df-psubsp 37505 df-pmap 37506 df-polarityN 37905 |
This theorem is referenced by: 2polcon4bN 37920 polcon2N 37921 pclss2polN 37923 2pmaplubN 37928 paddunN 37929 ispsubcl2N 37949 poml5N 37956 osumcllem1N 37958 osumcllem2N 37959 osumcllem3N 37960 osumcllem9N 37966 osumcllem11N 37968 pexmidN 37971 pexmidlem2N 37973 pexmidlem3N 37974 pexmidlem7N 37978 pexmidlem8N 37979 |
Copyright terms: Public domain | W3C validator |