| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polssatN | Structured version Visualization version GIF version | ||
| Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polssatN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 3 | polssat.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 1, 2, 3 | polsubN 40012 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) |
| 5 | 1, 2 | psubssat 39859 | . 2 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 4, 5 | syldan 591 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6487 Atomscatm 39368 HLchlt 39455 PSubSpcpsubsp 39601 ⊥𝑃cpolN 40007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18206 df-poset 18225 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p1 18336 df-lat 18344 df-clat 18411 df-oposet 39281 df-ol 39283 df-oml 39284 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-psubsp 39608 df-pmap 39609 df-polarityN 40008 |
| This theorem is referenced by: 2polcon4bN 40023 polcon2N 40024 pclss2polN 40026 2pmaplubN 40031 paddunN 40032 ispsubcl2N 40052 poml5N 40059 osumcllem1N 40061 osumcllem2N 40062 osumcllem3N 40063 osumcllem9N 40069 osumcllem11N 40071 pexmidN 40074 pexmidlem2N 40076 pexmidlem3N 40077 pexmidlem7N 40081 pexmidlem8N 40082 |
| Copyright terms: Public domain | W3C validator |