| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polssatN | Structured version Visualization version GIF version | ||
| Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polssatN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 3 | polssat.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 1, 2, 3 | polsubN 39895 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) |
| 5 | 1, 2 | psubssat 39742 | . 2 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 4, 5 | syldan 591 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 Atomscatm 39250 HLchlt 39337 PSubSpcpsubsp 39484 ⊥𝑃cpolN 39890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18236 df-poset 18255 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p1 18366 df-lat 18374 df-clat 18441 df-oposet 39163 df-ol 39165 df-oml 39166 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-psubsp 39491 df-pmap 39492 df-polarityN 39891 |
| This theorem is referenced by: 2polcon4bN 39906 polcon2N 39907 pclss2polN 39909 2pmaplubN 39914 paddunN 39915 ispsubcl2N 39935 poml5N 39942 osumcllem1N 39944 osumcllem2N 39945 osumcllem3N 39946 osumcllem9N 39952 osumcllem11N 39954 pexmidN 39957 pexmidlem2N 39959 pexmidlem3N 39960 pexmidlem7N 39964 pexmidlem8N 39965 |
| Copyright terms: Public domain | W3C validator |