| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polssatN | Structured version Visualization version GIF version | ||
| Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polssat.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polssatN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (PSubSp‘𝐾) = (PSubSp‘𝐾) | |
| 3 | polssat.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 1, 2, 3 | polsubN 39925 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) |
| 5 | 1, 2 | psubssat 39772 | . 2 ⊢ ((𝐾 ∈ HL ∧ ( ⊥ ‘𝑋) ∈ (PSubSp‘𝐾)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 6 | 4, 5 | syldan 591 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 Atomscatm 39281 HLchlt 39368 PSubSpcpsubsp 39514 ⊥𝑃cpolN 39920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p1 18322 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-psubsp 39521 df-pmap 39522 df-polarityN 39921 |
| This theorem is referenced by: 2polcon4bN 39936 polcon2N 39937 pclss2polN 39939 2pmaplubN 39944 paddunN 39945 ispsubcl2N 39965 poml5N 39972 osumcllem1N 39974 osumcllem2N 39975 osumcllem3N 39976 osumcllem9N 39982 osumcllem11N 39984 pexmidN 39987 pexmidlem2N 39989 pexmidlem3N 39990 pexmidlem7N 39994 pexmidlem8N 39995 |
| Copyright terms: Public domain | W3C validator |