Proof of Theorem pmodl42N
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝐾 ∈ HL) |
2 | | simpl3 1191 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ∈ 𝑆) |
3 | | eqid 2738 |
. . . . . . 7
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
4 | | pmodl42.s |
. . . . . . 7
⊢ 𝑆 = (PSubSp‘𝐾) |
5 | 3, 4 | psubssat 37695 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
6 | 1, 2, 5 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ⊆ (Atoms‘𝐾)) |
7 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ∈ 𝑆) |
8 | 3, 4 | psubssat 37695 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
9 | 1, 7, 8 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (Atoms‘𝐾)) |
10 | | simprl 767 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑍 ∈ 𝑆) |
11 | 3, 4 | psubssat 37695 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ (Atoms‘𝐾)) |
12 | 1, 10, 11 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑍 ⊆ (Atoms‘𝐾)) |
13 | | pmodl42.p |
. . . . . . 7
⊢ + =
(+𝑃‘𝐾) |
14 | 3, 13 | paddssat 37755 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾)) |
15 | 1, 9, 12, 14 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾)) |
16 | | simprr 769 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑊 ∈ 𝑆) |
17 | 4, 13 | paddclN 37783 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆) → (𝑌 + 𝑊) ∈ 𝑆) |
18 | 1, 2, 16, 17 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + 𝑊) ∈ 𝑆) |
19 | 3, 4 | psubssat 37695 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑆) → 𝑊 ⊆ (Atoms‘𝐾)) |
20 | 1, 16, 19 | syl2anc 583 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑊 ⊆ (Atoms‘𝐾)) |
21 | 3, 13 | sspadd1 37756 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾)) → 𝑌 ⊆ (𝑌 + 𝑊)) |
22 | 1, 6, 20, 21 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ⊆ (𝑌 + 𝑊)) |
23 | 3, 4, 13 | pmod1i 37789 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆)) → (𝑌 ⊆ (𝑌 + 𝑊) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
24 | 23 | 3impia 1115 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆) ∧ 𝑌 ⊆ (𝑌 + 𝑊)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |
25 | 1, 6, 15, 18, 22, 24 | syl131anc 1381 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |
26 | | incom 4131 |
. . . 4
⊢ ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))) |
27 | 25, 26 | eqtr3di 2794 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))) |
28 | 27 | oveq2d 7271 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
29 | | ssinss1 4168 |
. . . 4
⊢ ((𝑋 + 𝑍) ⊆ (Atoms‘𝐾) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾)) |
30 | 15, 29 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾)) |
31 | 3, 13 | paddass 37779 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
32 | 1, 9, 6, 30, 31 | syl13anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
33 | 3, 13 | paddass 37779 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
34 | 1, 9, 6, 12, 33 | syl13anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
35 | 3, 13 | padd12N 37780 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
36 | 1, 9, 6, 12, 35 | syl13anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
37 | 34, 36 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
38 | 3, 13 | paddass 37779 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊))) |
39 | 1, 9, 6, 20, 38 | syl13anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊))) |
40 | 37, 39 | ineq12d 4144 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊)))) |
41 | | incom 4131 |
. . . 4
⊢ ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) |
42 | 40, 41 | eqtrdi 2795 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍)))) |
43 | 3, 4 | psubssat 37695 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 + 𝑊) ∈ 𝑆) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾)) |
44 | 1, 18, 43 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾)) |
45 | 4, 13 | paddclN 37783 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆) → (𝑋 + 𝑍) ∈ 𝑆) |
46 | 1, 7, 10, 45 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ∈ 𝑆) |
47 | 4, 13 | paddclN 37783 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ (𝑋 + 𝑍) ∈ 𝑆) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) |
48 | 1, 2, 46, 47 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) |
49 | 3, 13 | sspadd1 37756 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑍)) |
50 | 1, 9, 12, 49 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (𝑋 + 𝑍)) |
51 | 3, 13 | sspadd2 37757 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍))) |
52 | 1, 15, 6, 51 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍))) |
53 | 50, 52 | sstrd 3927 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) |
54 | 3, 4, 13 | pmod1i 37789 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)) → (𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))) |
55 | 54 | 3impia 1115 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) ∧ 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
56 | 1, 9, 44, 48, 53, 55 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
57 | 42, 56 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
58 | 28, 32, 57 | 3eqtr4rd 2789 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |