Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodl42N Structured version   Visualization version   GIF version

Theorem pmodl42N 39474
Description: Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmodl42.s 𝑆 = (PSubSp‘𝐾)
pmodl42.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodl42N (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))

Proof of Theorem pmodl42N
StepHypRef Expression
1 simpl1 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝐾 ∈ HL)
2 simpl3 1190 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌𝑆)
3 eqid 2725 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmodl42.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 39377 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌 ⊆ (Atoms‘𝐾))
7 simpl2 1189 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋𝑆)
83, 4psubssat 39377 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (Atoms‘𝐾))
10 simprl 769 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑍𝑆)
113, 4psubssat 39377 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍 ⊆ (Atoms‘𝐾))
121, 10, 11syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑍 ⊆ (Atoms‘𝐾))
13 pmodl42.p . . . . . . 7 + = (+𝑃𝐾)
143, 13paddssat 39437 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾))
151, 9, 12, 14syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾))
16 simprr 771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑊𝑆)
174, 13paddclN 39465 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑆𝑊𝑆) → (𝑌 + 𝑊) ∈ 𝑆)
181, 2, 16, 17syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + 𝑊) ∈ 𝑆)
193, 4psubssat 39377 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝑆) → 𝑊 ⊆ (Atoms‘𝐾))
201, 16, 19syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑊 ⊆ (Atoms‘𝐾))
213, 13sspadd1 39438 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾)) → 𝑌 ⊆ (𝑌 + 𝑊))
221, 6, 20, 21syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌 ⊆ (𝑌 + 𝑊))
233, 4, 13pmod1i 39471 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆)) → (𝑌 ⊆ (𝑌 + 𝑊) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
24233impia 1114 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆) ∧ 𝑌 ⊆ (𝑌 + 𝑊)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
251, 6, 15, 18, 22, 24syl131anc 1380 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
26 incom 4199 . . . 4 ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))
2725, 26eqtr3di 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))
2827oveq2d 7435 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
29 ssinss1 4236 . . . 4 ((𝑋 + 𝑍) ⊆ (Atoms‘𝐾) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))
3015, 29syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))
313, 13paddass 39461 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
321, 9, 6, 30, 31syl13anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
333, 13paddass 39461 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
341, 9, 6, 12, 33syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
353, 13padd12N 39462 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
361, 9, 6, 12, 35syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
3734, 36eqtrd 2765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
383, 13paddass 39461 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊)))
391, 9, 6, 20, 38syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊)))
4037, 39ineq12d 4211 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))))
41 incom 4199 . . . 4 ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍)))
4240, 41eqtrdi 2781 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))))
433, 4psubssat 39377 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 + 𝑊) ∈ 𝑆) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾))
441, 18, 43syl2anc 582 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾))
454, 13paddclN 39465 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑍𝑆) → (𝑋 + 𝑍) ∈ 𝑆)
461, 7, 10, 45syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ∈ 𝑆)
474, 13paddclN 39465 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑆 ∧ (𝑋 + 𝑍) ∈ 𝑆) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)
481, 2, 46, 47syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)
493, 13sspadd1 39438 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑍))
501, 9, 12, 49syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (𝑋 + 𝑍))
513, 13sspadd2 39439 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍)))
521, 15, 6, 51syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍)))
5350, 52sstrd 3987 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)))
543, 4, 13pmod1i 39471 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)) → (𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))))
55543impia 1114 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) ∧ 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
561, 9, 44, 48, 53, 55syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
5742, 56eqtrd 2765 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
5828, 32, 573eqtr4rd 2776 1 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3943  wss 3944  cfv 6549  (class class class)co 7419  Atomscatm 38885  HLchlt 38972  PSubSpcpsubsp 39119  +𝑃cpadd 39418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-proset 18306  df-poset 18324  df-plt 18341  df-lub 18357  df-glb 18358  df-join 18359  df-meet 18360  df-p0 18436  df-lat 18443  df-clat 18510  df-oposet 38798  df-ol 38800  df-oml 38801  df-covers 38888  df-ats 38889  df-atl 38920  df-cvlat 38944  df-hlat 38973  df-psubsp 39126  df-padd 39419
This theorem is referenced by:  pl42lem4N  39605
  Copyright terms: Public domain W3C validator