Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodl42N Structured version   Visualization version   GIF version

Theorem pmodl42N 37792
Description: Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmodl42.s 𝑆 = (PSubSp‘𝐾)
pmodl42.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodl42N (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))

Proof of Theorem pmodl42N
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝐾 ∈ HL)
2 simpl3 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌𝑆)
3 eqid 2738 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmodl42.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 37695 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌 ⊆ (Atoms‘𝐾))
7 simpl2 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋𝑆)
83, 4psubssat 37695 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (Atoms‘𝐾))
10 simprl 767 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑍𝑆)
113, 4psubssat 37695 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍 ⊆ (Atoms‘𝐾))
121, 10, 11syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑍 ⊆ (Atoms‘𝐾))
13 pmodl42.p . . . . . . 7 + = (+𝑃𝐾)
143, 13paddssat 37755 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾))
151, 9, 12, 14syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾))
16 simprr 769 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑊𝑆)
174, 13paddclN 37783 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑆𝑊𝑆) → (𝑌 + 𝑊) ∈ 𝑆)
181, 2, 16, 17syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + 𝑊) ∈ 𝑆)
193, 4psubssat 37695 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝑆) → 𝑊 ⊆ (Atoms‘𝐾))
201, 16, 19syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑊 ⊆ (Atoms‘𝐾))
213, 13sspadd1 37756 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾)) → 𝑌 ⊆ (𝑌 + 𝑊))
221, 6, 20, 21syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌 ⊆ (𝑌 + 𝑊))
233, 4, 13pmod1i 37789 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆)) → (𝑌 ⊆ (𝑌 + 𝑊) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
24233impia 1115 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆) ∧ 𝑌 ⊆ (𝑌 + 𝑊)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
251, 6, 15, 18, 22, 24syl131anc 1381 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
26 incom 4131 . . . 4 ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))
2725, 26eqtr3di 2794 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))
2827oveq2d 7271 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
29 ssinss1 4168 . . . 4 ((𝑋 + 𝑍) ⊆ (Atoms‘𝐾) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))
3015, 29syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))
313, 13paddass 37779 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
321, 9, 6, 30, 31syl13anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
333, 13paddass 37779 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
341, 9, 6, 12, 33syl13anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
353, 13padd12N 37780 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
361, 9, 6, 12, 35syl13anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
3734, 36eqtrd 2778 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
383, 13paddass 37779 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊)))
391, 9, 6, 20, 38syl13anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊)))
4037, 39ineq12d 4144 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))))
41 incom 4131 . . . 4 ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍)))
4240, 41eqtrdi 2795 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))))
433, 4psubssat 37695 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 + 𝑊) ∈ 𝑆) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾))
441, 18, 43syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾))
454, 13paddclN 37783 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑍𝑆) → (𝑋 + 𝑍) ∈ 𝑆)
461, 7, 10, 45syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ∈ 𝑆)
474, 13paddclN 37783 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑆 ∧ (𝑋 + 𝑍) ∈ 𝑆) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)
481, 2, 46, 47syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)
493, 13sspadd1 37756 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑍))
501, 9, 12, 49syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (𝑋 + 𝑍))
513, 13sspadd2 37757 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍)))
521, 15, 6, 51syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍)))
5350, 52sstrd 3927 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)))
543, 4, 13pmod1i 37789 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)) → (𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))))
55543impia 1115 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) ∧ 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
561, 9, 44, 48, 53, 55syl131anc 1381 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
5742, 56eqtrd 2778 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
5828, 32, 573eqtr4rd 2789 1 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Atomscatm 37204  HLchlt 37291  PSubSpcpsubsp 37437  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-padd 37737
This theorem is referenced by:  pl42lem4N  37923
  Copyright terms: Public domain W3C validator