Proof of Theorem pmodl42N
Step | Hyp | Ref
| Expression |
1 | | incom 4061 |
. . . 4
⊢ ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))) |
2 | | simpl1 1172 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝐾 ∈ HL) |
3 | | simpl3 1174 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ∈ 𝑆) |
4 | | eqid 2773 |
. . . . . . 7
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
5 | | pmodl42.s |
. . . . . . 7
⊢ 𝑆 = (PSubSp‘𝐾) |
6 | 4, 5 | psubssat 36368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
7 | 2, 3, 6 | syl2anc 576 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ⊆ (Atoms‘𝐾)) |
8 | | simpl2 1173 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ∈ 𝑆) |
9 | 4, 5 | psubssat 36368 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
10 | 2, 8, 9 | syl2anc 576 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (Atoms‘𝐾)) |
11 | | simprl 759 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑍 ∈ 𝑆) |
12 | 4, 5 | psubssat 36368 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ (Atoms‘𝐾)) |
13 | 2, 11, 12 | syl2anc 576 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑍 ⊆ (Atoms‘𝐾)) |
14 | | pmodl42.p |
. . . . . . 7
⊢ + =
(+𝑃‘𝐾) |
15 | 4, 14 | paddssat 36428 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾)) |
16 | 2, 10, 13, 15 | syl3anc 1352 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾)) |
17 | | simprr 761 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑊 ∈ 𝑆) |
18 | 5, 14 | paddclN 36456 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆) → (𝑌 + 𝑊) ∈ 𝑆) |
19 | 2, 3, 17, 18 | syl3anc 1352 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + 𝑊) ∈ 𝑆) |
20 | 4, 5 | psubssat 36368 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑆) → 𝑊 ⊆ (Atoms‘𝐾)) |
21 | 2, 17, 20 | syl2anc 576 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑊 ⊆ (Atoms‘𝐾)) |
22 | 4, 14 | sspadd1 36429 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾)) → 𝑌 ⊆ (𝑌 + 𝑊)) |
23 | 2, 7, 21, 22 | syl3anc 1352 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ⊆ (𝑌 + 𝑊)) |
24 | 4, 5, 14 | pmod1i 36462 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆)) → (𝑌 ⊆ (𝑌 + 𝑊) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
25 | 24 | 3impia 1098 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆) ∧ 𝑌 ⊆ (𝑌 + 𝑊)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |
26 | 2, 7, 16, 19, 23, 25 | syl131anc 1364 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |
27 | 1, 26 | syl5reqr 2824 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))) |
28 | 27 | oveq2d 6991 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
29 | | ssinss1 4096 |
. . . 4
⊢ ((𝑋 + 𝑍) ⊆ (Atoms‘𝐾) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾)) |
30 | 16, 29 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾)) |
31 | 4, 14 | paddass 36452 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
32 | 2, 10, 7, 30, 31 | syl13anc 1353 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
33 | 4, 14 | paddass 36452 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
34 | 2, 10, 7, 13, 33 | syl13anc 1353 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
35 | 4, 14 | padd12N 36453 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
36 | 2, 10, 7, 13, 35 | syl13anc 1353 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
37 | 34, 36 | eqtrd 2809 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
38 | 4, 14 | paddass 36452 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊))) |
39 | 2, 10, 7, 21, 38 | syl13anc 1353 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊))) |
40 | 37, 39 | ineq12d 4072 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊)))) |
41 | | incom 4061 |
. . . 4
⊢ ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) |
42 | 40, 41 | syl6eq 2825 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍)))) |
43 | 4, 5 | psubssat 36368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 + 𝑊) ∈ 𝑆) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾)) |
44 | 2, 19, 43 | syl2anc 576 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾)) |
45 | 5, 14 | paddclN 36456 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆) → (𝑋 + 𝑍) ∈ 𝑆) |
46 | 2, 8, 11, 45 | syl3anc 1352 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ∈ 𝑆) |
47 | 5, 14 | paddclN 36456 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ (𝑋 + 𝑍) ∈ 𝑆) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) |
48 | 2, 3, 46, 47 | syl3anc 1352 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) |
49 | 4, 14 | sspadd1 36429 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑍)) |
50 | 2, 10, 13, 49 | syl3anc 1352 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (𝑋 + 𝑍)) |
51 | 4, 14 | sspadd2 36430 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍))) |
52 | 2, 16, 7, 51 | syl3anc 1352 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍))) |
53 | 50, 52 | sstrd 3863 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) |
54 | 4, 5, 14 | pmod1i 36462 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)) → (𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))) |
55 | 54 | 3impia 1098 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) ∧ 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
56 | 2, 10, 44, 48, 53, 55 | syl131anc 1364 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
57 | 42, 56 | eqtrd 2809 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
58 | 28, 32, 57 | 3eqtr4rd 2820 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |