Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodl42N Structured version   Visualization version   GIF version

Theorem pmodl42N 39818
Description: Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmodl42.s 𝑆 = (PSubSp‘𝐾)
pmodl42.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodl42N (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))

Proof of Theorem pmodl42N
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝐾 ∈ HL)
2 simpl3 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌𝑆)
3 eqid 2729 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
4 pmodl42.s . . . . . . 7 𝑆 = (PSubSp‘𝐾)
53, 4psubssat 39721 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌 ⊆ (Atoms‘𝐾))
7 simpl2 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋𝑆)
83, 4psubssat 39721 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (Atoms‘𝐾))
10 simprl 770 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑍𝑆)
113, 4psubssat 39721 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍 ⊆ (Atoms‘𝐾))
121, 10, 11syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑍 ⊆ (Atoms‘𝐾))
13 pmodl42.p . . . . . . 7 + = (+𝑃𝐾)
143, 13paddssat 39781 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾))
151, 9, 12, 14syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾))
16 simprr 772 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑊𝑆)
174, 13paddclN 39809 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝑆𝑊𝑆) → (𝑌 + 𝑊) ∈ 𝑆)
181, 2, 16, 17syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + 𝑊) ∈ 𝑆)
193, 4psubssat 39721 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝑆) → 𝑊 ⊆ (Atoms‘𝐾))
201, 16, 19syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑊 ⊆ (Atoms‘𝐾))
213, 13sspadd1 39782 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾)) → 𝑌 ⊆ (𝑌 + 𝑊))
221, 6, 20, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑌 ⊆ (𝑌 + 𝑊))
233, 4, 13pmod1i 39815 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆)) → (𝑌 ⊆ (𝑌 + 𝑊) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
24233impia 1117 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆) ∧ 𝑌 ⊆ (𝑌 + 𝑊)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
251, 6, 15, 18, 22, 24syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
26 incom 4168 . . . 4 ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))
2725, 26eqtr3di 2779 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))
2827oveq2d 7385 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
29 ssinss1 4205 . . . 4 ((𝑋 + 𝑍) ⊆ (Atoms‘𝐾) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))
3015, 29syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))
313, 13paddass 39805 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
321, 9, 6, 30, 31syl13anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))))
333, 13paddass 39805 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
341, 9, 6, 12, 33syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
353, 13padd12N 39806 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
361, 9, 6, 12, 35syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
3734, 36eqtrd 2764 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
383, 13paddass 39805 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊)))
391, 9, 6, 20, 38syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊)))
4037, 39ineq12d 4180 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))))
41 incom 4168 . . . 4 ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍)))
4240, 41eqtrdi 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))))
433, 4psubssat 39721 . . . . 5 ((𝐾 ∈ HL ∧ (𝑌 + 𝑊) ∈ 𝑆) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾))
441, 18, 43syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾))
454, 13paddclN 39809 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑍𝑆) → (𝑋 + 𝑍) ∈ 𝑆)
461, 7, 10, 45syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ∈ 𝑆)
474, 13paddclN 39809 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑆 ∧ (𝑋 + 𝑍) ∈ 𝑆) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)
481, 2, 46, 47syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)
493, 13sspadd1 39782 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑍))
501, 9, 12, 49syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (𝑋 + 𝑍))
513, 13sspadd2 39783 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍)))
521, 15, 6, 51syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍)))
5350, 52sstrd 3954 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)))
543, 4, 13pmod1i 39815 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)) → (𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))))
55543impia 1117 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) ∧ 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
561, 9, 44, 48, 53, 55syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
5742, 56eqtrd 2764 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))
5828, 32, 573eqtr4rd 2775 1 (((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) ∧ (𝑍𝑆𝑊𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3910  wss 3911  cfv 6499  (class class class)co 7369  Atomscatm 39229  HLchlt 39316  PSubSpcpsubsp 39463  +𝑃cpadd 39762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-psubsp 39470  df-padd 39763
This theorem is referenced by:  pl42lem4N  39949
  Copyright terms: Public domain W3C validator