![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclun2N | Structured version Visualization version GIF version |
Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclun2.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclun2.p | ⊢ + = (+𝑃‘𝐾) |
pclun2.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclun2N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ HL) | |
2 | eqid 2731 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | pclun2.s | . . . . 5 ⊢ 𝑆 = (PSubSp‘𝐾) | |
4 | 2, 3 | psubssat 39089 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
5 | 4 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
6 | 2, 3 | psubssat 39089 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
7 | 6 | 3adant2 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
8 | pclun2.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
9 | pclun2.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
10 | 2, 8, 9 | pclunN 39233 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) |
11 | 1, 5, 7, 10 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) |
12 | 3, 8 | paddclN 39177 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
13 | 3, 9 | pclidN 39231 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
14 | 1, 12, 13 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
15 | 11, 14 | eqtrd 2771 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Atomscatm 38597 HLchlt 38684 PSubSpcpsubsp 38831 +𝑃cpadd 39130 PClcpclN 39222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38510 df-ol 38512 df-oml 38513 df-covers 38600 df-ats 38601 df-atl 38632 df-cvlat 38656 df-hlat 38685 df-psubsp 38838 df-padd 39131 df-pclN 39223 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |