| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclun2N | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclun2.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pclun2.p | ⊢ + = (+𝑃‘𝐾) |
| pclun2.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclun2N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ HL) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | pclun2.s | . . . . 5 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 4 | 2, 3 | psubssat 39755 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 6 | 2, 3 | psubssat 39755 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 7 | 6 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 8 | pclun2.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 9 | pclun2.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 10 | 2, 8, 9 | pclunN 39899 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) |
| 11 | 1, 5, 7, 10 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) |
| 12 | 3, 8 | paddclN 39843 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| 13 | 3, 9 | pclidN 39897 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
| 14 | 1, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
| 15 | 11, 14 | eqtrd 2765 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Atomscatm 39263 HLchlt 39350 PSubSpcpsubsp 39497 +𝑃cpadd 39796 PClcpclN 39888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-psubsp 39504 df-padd 39797 df-pclN 39889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |