![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclun2N | Structured version Visualization version GIF version |
Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclun2.s | β’ π = (PSubSpβπΎ) |
pclun2.p | β’ + = (+πβπΎ) |
pclun2.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pclun2N | β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (π + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β πΎ β HL) | |
2 | eqid 2732 | . . . . 5 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
3 | pclun2.s | . . . . 5 β’ π = (PSubSpβπΎ) | |
4 | 2, 3 | psubssat 38620 | . . . 4 β’ ((πΎ β HL β§ π β π) β π β (AtomsβπΎ)) |
5 | 4 | 3adant3 1132 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β π β (AtomsβπΎ)) |
6 | 2, 3 | psubssat 38620 | . . . 4 β’ ((πΎ β HL β§ π β π) β π β (AtomsβπΎ)) |
7 | 6 | 3adant2 1131 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β π β (AtomsβπΎ)) |
8 | pclun2.p | . . . 4 β’ + = (+πβπΎ) | |
9 | pclun2.c | . . . 4 β’ π = (PClβπΎ) | |
10 | 2, 8, 9 | pclunN 38764 | . . 3 β’ ((πΎ β HL β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β (πβ(π βͺ π)) = (πβ(π + π))) |
11 | 1, 5, 7, 10 | syl3anc 1371 | . 2 β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (πβ(π + π))) |
12 | 3, 8 | paddclN 38708 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β (π + π) β π) |
13 | 3, 9 | pclidN 38762 | . . 3 β’ ((πΎ β HL β§ (π + π) β π) β (πβ(π + π)) = (π + π)) |
14 | 1, 12, 13 | syl2anc 584 | . 2 β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π + π)) = (π + π)) |
15 | 11, 14 | eqtrd 2772 | 1 β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (π + π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βͺ cun 3946 β wss 3948 βcfv 6543 (class class class)co 7408 Atomscatm 38128 HLchlt 38215 PSubSpcpsubsp 38362 +πcpadd 38661 PClcpclN 38753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-psubsp 38369 df-padd 38662 df-pclN 38754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |