Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclun2N Structured version   Visualization version   GIF version

Theorem pclun2N 39404
Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun2.s 𝑆 = (PSubSpβ€˜πΎ)
pclun2.p + = (+π‘ƒβ€˜πΎ)
pclun2.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclun2N ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (π‘ˆβ€˜(𝑋 βˆͺ π‘Œ)) = (𝑋 + π‘Œ))

Proof of Theorem pclun2N
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ 𝐾 ∈ HL)
2 eqid 2728 . . . . 5 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
3 pclun2.s . . . . 5 𝑆 = (PSubSpβ€˜πΎ)
42, 3psubssat 39259 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) β†’ 𝑋 βŠ† (Atomsβ€˜πΎ))
543adant3 1129 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ 𝑋 βŠ† (Atomsβ€˜πΎ))
62, 3psubssat 39259 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝑆) β†’ π‘Œ βŠ† (Atomsβ€˜πΎ))
763adant2 1128 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ π‘Œ βŠ† (Atomsβ€˜πΎ))
8 pclun2.p . . . 4 + = (+π‘ƒβ€˜πΎ)
9 pclun2.c . . . 4 π‘ˆ = (PClβ€˜πΎ)
102, 8, 9pclunN 39403 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† (Atomsβ€˜πΎ) ∧ π‘Œ βŠ† (Atomsβ€˜πΎ)) β†’ (π‘ˆβ€˜(𝑋 βˆͺ π‘Œ)) = (π‘ˆβ€˜(𝑋 + π‘Œ)))
111, 5, 7, 10syl3anc 1368 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (π‘ˆβ€˜(𝑋 βˆͺ π‘Œ)) = (π‘ˆβ€˜(𝑋 + π‘Œ)))
123, 8paddclN 39347 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (𝑋 + π‘Œ) ∈ 𝑆)
133, 9pclidN 39401 . . 3 ((𝐾 ∈ HL ∧ (𝑋 + π‘Œ) ∈ 𝑆) β†’ (π‘ˆβ€˜(𝑋 + π‘Œ)) = (𝑋 + π‘Œ))
141, 12, 13syl2anc 582 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (π‘ˆβ€˜(𝑋 + π‘Œ)) = (𝑋 + π‘Œ))
1511, 14eqtrd 2768 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ π‘Œ ∈ 𝑆) β†’ (π‘ˆβ€˜(𝑋 βˆͺ π‘Œ)) = (𝑋 + π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βˆͺ cun 3947   βŠ† wss 3949  β€˜cfv 6553  (class class class)co 7426  Atomscatm 38767  HLchlt 38854  PSubSpcpsubsp 39001  +𝑃cpadd 39300  PClcpclN 39392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-psubsp 39008  df-padd 39301  df-pclN 39393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator