Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclun2N Structured version   Visualization version   GIF version

Theorem pclun2N 39881
Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun2.s 𝑆 = (PSubSp‘𝐾)
pclun2.p + = (+𝑃𝐾)
pclun2.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclun2N ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑈‘(𝑋𝑌)) = (𝑋 + 𝑌))

Proof of Theorem pclun2N
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝐾 ∈ HL)
2 eqid 2734 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 pclun2.s . . . . 5 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 39736 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
543adant3 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
62, 3psubssat 39736 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
763adant2 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Atoms‘𝐾))
8 pclun2.p . . . 4 + = (+𝑃𝐾)
9 pclun2.c . . . 4 𝑈 = (PCl‘𝐾)
102, 8, 9pclunN 39880 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
111, 5, 7, 10syl3anc 1370 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
123, 8paddclN 39824 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
133, 9pclidN 39878 . . 3 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌))
141, 12, 13syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌))
1511, 14eqtrd 2774 1 ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑈‘(𝑋𝑌)) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1536  wcel 2105  cun 3960  wss 3962  cfv 6562  (class class class)co 7430  Atomscatm 39244  HLchlt 39331  PSubSpcpsubsp 39478  +𝑃cpadd 39777  PClcpclN 39869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-psubsp 39485  df-padd 39778  df-pclN 39870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator