![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclun2N | Structured version Visualization version GIF version |
Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclun2.s | β’ π = (PSubSpβπΎ) |
pclun2.p | β’ + = (+πβπΎ) |
pclun2.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pclun2N | β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (π + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β πΎ β HL) | |
2 | eqid 2728 | . . . . 5 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
3 | pclun2.s | . . . . 5 β’ π = (PSubSpβπΎ) | |
4 | 2, 3 | psubssat 39259 | . . . 4 β’ ((πΎ β HL β§ π β π) β π β (AtomsβπΎ)) |
5 | 4 | 3adant3 1129 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β π β (AtomsβπΎ)) |
6 | 2, 3 | psubssat 39259 | . . . 4 β’ ((πΎ β HL β§ π β π) β π β (AtomsβπΎ)) |
7 | 6 | 3adant2 1128 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β π β (AtomsβπΎ)) |
8 | pclun2.p | . . . 4 β’ + = (+πβπΎ) | |
9 | pclun2.c | . . . 4 β’ π = (PClβπΎ) | |
10 | 2, 8, 9 | pclunN 39403 | . . 3 β’ ((πΎ β HL β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β (πβ(π βͺ π)) = (πβ(π + π))) |
11 | 1, 5, 7, 10 | syl3anc 1368 | . 2 β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (πβ(π + π))) |
12 | 3, 8 | paddclN 39347 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β (π + π) β π) |
13 | 3, 9 | pclidN 39401 | . . 3 β’ ((πΎ β HL β§ (π + π) β π) β (πβ(π + π)) = (π + π)) |
14 | 1, 12, 13 | syl2anc 582 | . 2 β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π + π)) = (π + π)) |
15 | 11, 14 | eqtrd 2768 | 1 β’ ((πΎ β HL β§ π β π β§ π β π) β (πβ(π βͺ π)) = (π + π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βͺ cun 3947 β wss 3949 βcfv 6553 (class class class)co 7426 Atomscatm 38767 HLchlt 38854 PSubSpcpsubsp 39001 +πcpadd 39300 PClcpclN 39392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-proset 18294 df-poset 18312 df-plt 18329 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-p0 18424 df-lat 18431 df-clat 18498 df-oposet 38680 df-ol 38682 df-oml 38683 df-covers 38770 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 df-psubsp 39008 df-padd 39301 df-pclN 39393 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |