| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclun2N | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclun2.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pclun2.p | ⊢ + = (+𝑃‘𝐾) |
| pclun2.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclun2N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ HL) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | pclun2.s | . . . . 5 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 4 | 2, 3 | psubssat 39719 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 6 | 2, 3 | psubssat 39719 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 7 | 6 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 8 | pclun2.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 9 | pclun2.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 10 | 2, 8, 9 | pclunN 39863 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) |
| 11 | 1, 5, 7, 10 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) |
| 12 | 3, 8 | paddclN 39807 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| 13 | 3, 9 | pclidN 39861 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
| 14 | 1, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 + 𝑌)) = (𝑋 + 𝑌)) |
| 15 | 11, 14 | eqtrd 2770 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 Atomscatm 39227 HLchlt 39314 PSubSpcpsubsp 39461 +𝑃cpadd 39760 PClcpclN 39852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-lat 18440 df-clat 18507 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-psubsp 39468 df-padd 39761 df-pclN 39853 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |