| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cgrane3 | Structured version Visualization version GIF version | ||
| Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| Ref | Expression |
|---|---|
| iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
| iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
| iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
| iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| cgrahl1.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Ref | Expression |
|---|---|
| cgrane3 | ⊢ (𝜑 → 𝐸 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgra.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | iscgra.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | iscgra.k | . . . 4 ⊢ 𝐾 = (hlG‘𝐺) | |
| 4 | simpllr 775 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) | |
| 5 | iscgra.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 6 | 5 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
| 7 | iscgra.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 8 | 7 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
| 9 | iscgra.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | 9 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
| 11 | simpr2 1196 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑥(𝐾‘𝐸)𝐷) | |
| 12 | 1, 2, 3, 4, 6, 8, 10, 11 | hlne2 28579 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐷 ≠ 𝐸) |
| 13 | 12 | necomd 2983 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐸 ≠ 𝐷) |
| 14 | cgrahl1.2 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
| 15 | iscgra.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 16 | iscgra.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 17 | iscgra.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 18 | iscgra.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 19 | 1, 2, 3, 9, 15, 16, 17, 5, 7, 18 | iscgra 28782 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 20 | 14, 19 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 21 | 13, 20 | r19.29vva 3192 | 1 ⊢ (𝜑 → 𝐸 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 class class class wbr 5086 ‘cfv 6476 〈“cs3 14744 Basecbs 17115 TarskiGcstrkg 28400 Itvcitv 28406 cgrGccgrg 28483 hlGchlg 28573 cgrAccgra 28780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-hlg 28574 df-cgra 28781 |
| This theorem is referenced by: cgracom 28795 cgratr 28796 cgraswaplr 28798 dfcgra2 28803 leagne3 28824 tgsas2 28829 tgasa1 28831 |
| Copyright terms: Public domain | W3C validator |