MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrahl1 Structured version   Visualization version   GIF version

Theorem cgrahl1 28570
Description: Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of [Schwabhauser] p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Baseβ€˜πΊ)
iscgra.i 𝐼 = (Itvβ€˜πΊ)
iscgra.k 𝐾 = (hlGβ€˜πΊ)
iscgra.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
iscgra.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
iscgra.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
iscgra.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
iscgra.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
iscgra.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
iscgra.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
cgrahl1.2 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
cgrahl1.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
cgrahl1.1 (πœ‘ β†’ 𝑋(πΎβ€˜πΈ)𝐷)
Assertion
Ref Expression
cgrahl1 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ‘‹πΈπΉβ€βŸ©)

Proof of Theorem cgrahl1
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Baseβ€˜πΊ)
2 iscgra.i . . 3 𝐼 = (Itvβ€˜πΊ)
3 iscgra.k . . 3 𝐾 = (hlGβ€˜πΊ)
4 iscgra.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐺 ∈ TarskiG)
6 iscgra.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
76ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐴 ∈ 𝑃)
8 iscgra.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
98ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐡 ∈ 𝑃)
10 iscgra.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
1110ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐢 ∈ 𝑃)
12 cgrahl1.x . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝑃)
1312ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑋 ∈ 𝑃)
14 iscgra.e . . . 4 (πœ‘ β†’ 𝐸 ∈ 𝑃)
1514ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐸 ∈ 𝑃)
16 iscgra.f . . . 4 (πœ‘ β†’ 𝐹 ∈ 𝑃)
1716ad3antrrr 727 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐹 ∈ 𝑃)
18 simpllr 773 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ π‘₯ ∈ 𝑃)
19 simplr 766 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑦 ∈ 𝑃)
20 simpr1 1191 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ©)
21 iscgra.d . . . . 5 (πœ‘ β†’ 𝐷 ∈ 𝑃)
2221ad3antrrr 727 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐷 ∈ 𝑃)
23 simpr2 1192 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ π‘₯(πΎβ€˜πΈ)𝐷)
24 cgrahl1.1 . . . . . 6 (πœ‘ β†’ 𝑋(πΎβ€˜πΈ)𝐷)
2524ad3antrrr 727 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑋(πΎβ€˜πΈ)𝐷)
261, 2, 3, 13, 22, 15, 5, 25hlcomd 28358 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐷(πΎβ€˜πΈ)𝑋)
271, 2, 3, 18, 22, 13, 5, 15, 23, 26hltr 28364 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ π‘₯(πΎβ€˜πΈ)𝑋)
28 simpr3 1193 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑦(πΎβ€˜πΈ)𝐹)
291, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 20, 27, 28iscgrad 28565 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ‘‹πΈπΉβ€βŸ©)
30 cgrahl1.2 . . 3 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
311, 2, 3, 4, 6, 8, 10, 21, 14, 16iscgra 28563 . . 3 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ© ↔ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)))
3230, 31mpbid 231 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹))
3329, 32r19.29vva 3207 1 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ‘‹πΈπΉβ€βŸ©)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  βŸ¨β€œcs3 14796  Basecbs 17150  TarskiGcstrkg 28181  Itvcitv 28187  cgrGccgrg 28264  hlGchlg 28354  cgrAccgra 28561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-oadd 8468  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-xnn0 12546  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14293  df-word 14468  df-concat 14524  df-s1 14549  df-s2 14802  df-s3 14803  df-trkgc 28202  df-trkgb 28203  df-trkgcb 28204  df-trkg 28207  df-cgrg 28265  df-hlg 28355  df-cgra 28562
This theorem is referenced by:  cgratr  28577  dfcgra2  28584  sacgr  28585  acopy  28587  acopyeu  28588
  Copyright terms: Public domain W3C validator