MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracgr Structured version   Visualization version   GIF version

Theorem cgracgr 28806
Description: First direction of proposition 11.4 of [Schwabhauser] p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
cgrahl1.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrahl1.x (𝜑𝑋𝑃)
cgracgr.m = (dist‘𝐺)
cgracgr.y (𝜑𝑌𝑃)
cgracgr.1 (𝜑𝑋(𝐾𝐵)𝐴)
cgracgr.2 (𝜑𝑌(𝐾𝐵)𝐶)
cgracgr.3 (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))
cgracgr.4 (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))
Assertion
Ref Expression
cgracgr (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))

Proof of Theorem cgracgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2733 . . 3 (LineG‘𝐺) = (LineG‘𝐺)
3 iscgra.i . . 3 𝐼 = (Itv‘𝐺)
4 iscgra.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
6 iscgra.a . . . 4 (𝜑𝐴𝑃)
76ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐴𝑃)
8 iscgra.b . . . 4 (𝜑𝐵𝑃)
98ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐵𝑃)
10 cgrahl1.x . . . 4 (𝜑𝑋𝑃)
1110ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑋𝑃)
12 eqid 2733 . . 3 (cgrG‘𝐺) = (cgrG‘𝐺)
13 simpllr 775 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝑃)
14 iscgra.e . . . 4 (𝜑𝐸𝑃)
1514ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝑃)
16 cgracgr.m . . 3 = (dist‘𝐺)
17 cgracgr.y . . . 4 (𝜑𝑌𝑃)
1817ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑌𝑃)
19 iscgra.d . . . 4 (𝜑𝐷𝑃)
2019ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝑃)
21 iscgra.f . . . 4 (𝜑𝐹𝑃)
2221ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐹𝑃)
23 iscgra.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
24 cgracgr.1 . . . . . . . . 9 (𝜑𝑋(𝐾𝐵)𝐴)
251, 3, 23, 10, 6, 8, 4, 24hlne2 28594 . . . . . . . 8 (𝜑𝐴𝐵)
2625necomd 2985 . . . . . . 7 (𝜑𝐵𝐴)
271, 3, 23, 10, 6, 8, 4, 2, 24hlln 28595 . . . . . . 7 (𝜑𝑋 ∈ (𝐴(LineG‘𝐺)𝐵))
281, 3, 2, 4, 8, 6, 10, 26, 27lncom 28610 . . . . . 6 (𝜑𝑋 ∈ (𝐵(LineG‘𝐺)𝐴))
2928orcd 873 . . . . 5 (𝜑 → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐴) ∨ 𝐵 = 𝐴))
301, 2, 3, 4, 8, 6, 10, 29colrot1 28547 . . . 4 (𝜑 → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋))
3130ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋))
32 iscgra.c . . . . . 6 (𝜑𝐶𝑃)
3332ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐶𝑃)
34 simplr 768 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝑃)
35 simpr1 1195 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
361, 16, 3, 12, 5, 7, 9, 33, 13, 15, 34, 35cgr3simp1 28508 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝑥 𝐸))
37 cgracgr.3 . . . . 5 (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))
3837ad3antrrr 730 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝑋) = (𝐸 𝐷))
39 eqid 2733 . . . . . . 7 (≤G‘𝐺) = (≤G‘𝐺)
40 simpr2 1196 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐷)
411, 3, 23, 13, 20, 15, 5ishlg 28590 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥(𝐾𝐸)𝐷 ↔ (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))))
4240, 41mpbid 232 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥𝐸𝐷𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))))
4342simp3d 1144 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))
441, 3, 23, 10, 6, 8, 4ishlg 28590 . . . . . . . . . . 11 (𝜑 → (𝑋(𝐾𝐵)𝐴 ↔ (𝑋𝐵𝐴𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))))
4524, 44mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝐴𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋))))
4645simp3d 1144 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))
4746orcomd 871 . . . . . . . 8 (𝜑 → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴)))
4847ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴)))
4936eqcomd 2739 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 𝐸) = (𝐴 𝐵))
501, 16, 3, 5, 13, 15, 7, 9, 49tgcgrcomlr 28468 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐸 𝑥) = (𝐵 𝐴))
5138eqcomd 2739 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐸 𝐷) = (𝐵 𝑋))
521, 16, 3, 39, 5, 15, 13, 20, 9, 9, 7, 11, 43, 48, 50, 51tgcgrsub2 28583 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 𝐷) = (𝐴 𝑋))
5352eqcomd 2739 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝑋) = (𝑥 𝐷))
541, 16, 3, 5, 7, 11, 13, 20, 53tgcgrcomlr 28468 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑋 𝐴) = (𝐷 𝑥))
551, 16, 12, 5, 7, 9, 11, 13, 15, 20, 36, 38, 54trgcgr 28504 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝐷”⟩)
56 cgracgr.2 . . . . . . . . 9 (𝜑𝑌(𝐾𝐵)𝐶)
571, 3, 23, 17, 32, 8, 4, 2, 56hlln 28595 . . . . . . . 8 (𝜑𝑌 ∈ (𝐶(LineG‘𝐺)𝐵))
5857orcd 873 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
591, 2, 3, 4, 32, 8, 17, 58colrot1 28547 . . . . . 6 (𝜑 → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌))
6059ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌))
611, 16, 3, 12, 5, 7, 9, 33, 13, 15, 34, 35cgr3simp2 28509 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝐶) = (𝐸 𝑦))
621, 3, 23, 17, 32, 8, 4ishlg 28590 . . . . . . . . . . 11 (𝜑 → (𝑌(𝐾𝐵)𝐶 ↔ (𝑌𝐵𝐶𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))))
6356, 62mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝐶𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌))))
6463simp3d 1144 . . . . . . . . 9 (𝜑 → (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))
6564orcomd 871 . . . . . . . 8 (𝜑 → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶)))
6665ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶)))
67 simpr3 1197 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐹)
681, 3, 23, 34, 22, 15, 5ishlg 28590 . . . . . . . . 9 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦(𝐾𝐸)𝐹 ↔ (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))))
6967, 68mpbid 232 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦𝐸𝐹𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))))
7069simp3d 1144 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))
71 cgracgr.4 . . . . . . . 8 (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))
7271ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝑌) = (𝐸 𝐹))
731, 16, 3, 39, 5, 9, 33, 18, 15, 15, 34, 22, 66, 70, 61, 72tgcgrsub2 28583 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 𝑌) = (𝑦 𝐹))
741, 16, 3, 5, 9, 18, 15, 22, 72tgcgrcomlr 28468 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑌 𝐵) = (𝐹 𝐸))
751, 16, 12, 5, 9, 33, 18, 15, 34, 22, 61, 73, 74trgcgr 28504 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → ⟨“𝐵𝐶𝑌”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝐹”⟩)
7650eqcomd 2739 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐵 𝐴) = (𝐸 𝑥))
771, 16, 3, 12, 5, 7, 9, 33, 13, 15, 34, 35cgr3simp3 28510 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐶 𝐴) = (𝑦 𝑥))
78 cgrahl1.2 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
791, 3, 23, 4, 6, 8, 32, 19, 14, 21, 78cgrane2 28801 . . . . . 6 (𝜑𝐵𝐶)
8079ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐵𝐶)
811, 2, 3, 5, 9, 33, 18, 12, 15, 34, 16, 7, 22, 13, 60, 75, 76, 77, 80tgfscgr 28556 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑌 𝐴) = (𝐹 𝑥))
821, 16, 3, 5, 18, 7, 22, 13, 81tgcgrcomlr 28468 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 𝑌) = (𝑥 𝐹))
8325ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐴𝐵)
841, 2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 18, 20, 22, 31, 55, 82, 72, 83tgfscgr 28556 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑋 𝑌) = (𝐷 𝐹))
851, 3, 23, 4, 6, 8, 32, 19, 14, 21iscgra 28797 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
8678, 85mpbid 232 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
8784, 86r19.29vva 3194 1 (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wrex 3058   class class class wbr 5095  cfv 6489  (class class class)co 7355  ⟨“cs3 14759  Basecbs 17130  distcds 17180  TarskiGcstrkg 28415  Itvcitv 28421  LineGclng 28422  cgrGccgrg 28498  ≤Gcleg 28570  hlGchlg 28588  cgrAccgra 28795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-s2 14765  df-s3 14766  df-trkgc 28436  df-trkgb 28437  df-trkgcb 28438  df-trkg 28441  df-cgrg 28499  df-leg 28571  df-hlg 28589  df-cgra 28796
This theorem is referenced by:  cgracom  28810  cgratr  28811  dfcgra2  28818  tgsas1  28842  tgasa1  28846
  Copyright terms: Public domain W3C validator