Step | Hyp | Ref
| Expression |
1 | | iscgra.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | eqid 2738 |
. . 3
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
3 | | iscgra.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
4 | | iscgra.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
6 | | iscgra.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐴 ∈ 𝑃) |
8 | | iscgra.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
10 | | cgrahl1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
11 | 10 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑋 ∈ 𝑃) |
12 | | eqid 2738 |
. . 3
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
13 | | simpllr 772 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) |
14 | | iscgra.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
15 | 14 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
16 | | cgracgr.m |
. . 3
⊢ − =
(dist‘𝐺) |
17 | | cgracgr.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
18 | 17 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑌 ∈ 𝑃) |
19 | | iscgra.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
20 | 19 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
21 | | iscgra.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
22 | 21 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
23 | | iscgra.k |
. . . . . . . . 9
⊢ 𝐾 = (hlG‘𝐺) |
24 | | cgracgr.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋(𝐾‘𝐵)𝐴) |
25 | 1, 3, 23, 10, 6, 8, 4, 24 | hlne2 26871 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
26 | 25 | necomd 2998 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
27 | 1, 3, 23, 10, 6, 8, 4, 2, 24 | hlln 26872 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝐴(LineG‘𝐺)𝐵)) |
28 | 1, 3, 2, 4, 8, 6, 10, 26, 27 | lncom 26887 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵(LineG‘𝐺)𝐴)) |
29 | 28 | orcd 869 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ (𝐵(LineG‘𝐺)𝐴) ∨ 𝐵 = 𝐴)) |
30 | 1, 2, 3, 4, 8, 6, 10, 29 | colrot1 26824 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋)) |
31 | 30 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐵 ∈ (𝐴(LineG‘𝐺)𝑋) ∨ 𝐴 = 𝑋)) |
32 | | iscgra.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
33 | 32 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
34 | | simplr 765 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) |
35 | | simpr1 1192 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉) |
36 | 1, 16, 3, 12, 5, 7,
9, 33, 13, 15, 34, 35 | cgr3simp1 26785 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐴 − 𝐵) = (𝑥 − 𝐸)) |
37 | | cgracgr.3 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝑋) = (𝐸 − 𝐷)) |
38 | 37 | ad3antrrr 726 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐵 − 𝑋) = (𝐸 − 𝐷)) |
39 | | eqid 2738 |
. . . . . . 7
⊢
(≤G‘𝐺) =
(≤G‘𝐺) |
40 | | simpr2 1193 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑥(𝐾‘𝐸)𝐷) |
41 | 1, 3, 23, 13, 20, 15, 5 | ishlg 26867 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑥(𝐾‘𝐸)𝐷 ↔ (𝑥 ≠ 𝐸 ∧ 𝐷 ≠ 𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))))) |
42 | 40, 41 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑥 ≠ 𝐸 ∧ 𝐷 ≠ 𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥)))) |
43 | 42 | simp3d 1142 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑥 ∈ (𝐸𝐼𝐷) ∨ 𝐷 ∈ (𝐸𝐼𝑥))) |
44 | 1, 3, 23, 10, 6, 8, 4 | ishlg 26867 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋(𝐾‘𝐵)𝐴 ↔ (𝑋 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋))))) |
45 | 24, 44 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋)))) |
46 | 45 | simp3d 1142 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝑋))) |
47 | 46 | orcomd 867 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴))) |
48 | 47 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐴 ∈ (𝐵𝐼𝑋) ∨ 𝑋 ∈ (𝐵𝐼𝐴))) |
49 | 36 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑥 − 𝐸) = (𝐴 − 𝐵)) |
50 | 1, 16, 3, 5, 13, 15, 7, 9, 49 | tgcgrcomlr 26745 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐸 − 𝑥) = (𝐵 − 𝐴)) |
51 | 38 | eqcomd 2744 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐸 − 𝐷) = (𝐵 − 𝑋)) |
52 | 1, 16, 3, 39, 5, 15, 13, 20, 9, 9, 7, 11,
43, 48, 50, 51 | tgcgrsub2 26860 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑥 − 𝐷) = (𝐴 − 𝑋)) |
53 | 52 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐴 − 𝑋) = (𝑥 − 𝐷)) |
54 | 1, 16, 3, 5, 7, 11,
13, 20, 53 | tgcgrcomlr 26745 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑋 − 𝐴) = (𝐷 − 𝑥)) |
55 | 1, 16, 12, 5, 7, 9,
11, 13, 15, 20, 36, 38, 54 | trgcgr 26781 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝑥𝐸𝐷”〉) |
56 | | cgracgr.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌(𝐾‘𝐵)𝐶) |
57 | 1, 3, 23, 17, 32, 8, 4, 2, 56 | hlln 26872 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝐶(LineG‘𝐺)𝐵)) |
58 | 57 | orcd 869 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵)) |
59 | 1, 2, 3, 4, 32, 8,
17, 58 | colrot1 26824 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌)) |
60 | 59 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐶 ∈ (𝐵(LineG‘𝐺)𝑌) ∨ 𝐵 = 𝑌)) |
61 | 1, 16, 3, 12, 5, 7,
9, 33, 13, 15, 34, 35 | cgr3simp2 26786 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐵 − 𝐶) = (𝐸 − 𝑦)) |
62 | 1, 3, 23, 17, 32, 8, 4 | ishlg 26867 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌(𝐾‘𝐵)𝐶 ↔ (𝑌 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌))))) |
63 | 56, 62 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌)))) |
64 | 63 | simp3d 1142 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝑌))) |
65 | 64 | orcomd 867 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶))) |
66 | 65 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐶 ∈ (𝐵𝐼𝑌) ∨ 𝑌 ∈ (𝐵𝐼𝐶))) |
67 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦(𝐾‘𝐸)𝐹) |
68 | 1, 3, 23, 34, 22, 15, 5 | ishlg 26867 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑦(𝐾‘𝐸)𝐹 ↔ (𝑦 ≠ 𝐸 ∧ 𝐹 ≠ 𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))))) |
69 | 67, 68 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑦 ≠ 𝐸 ∧ 𝐹 ≠ 𝐸 ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦)))) |
70 | 69 | simp3d 1142 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑦 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝑦))) |
71 | | cgracgr.4 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝑌) = (𝐸 − 𝐹)) |
72 | 71 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐵 − 𝑌) = (𝐸 − 𝐹)) |
73 | 1, 16, 3, 39, 5, 9,
33, 18, 15, 15, 34, 22, 66, 70, 61, 72 | tgcgrsub2 26860 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐶 − 𝑌) = (𝑦 − 𝐹)) |
74 | 1, 16, 3, 5, 9, 18,
15, 22, 72 | tgcgrcomlr 26745 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑌 − 𝐵) = (𝐹 − 𝐸)) |
75 | 1, 16, 12, 5, 9, 33, 18, 15, 34, 22, 61, 73, 74 | trgcgr 26781 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 〈“𝐵𝐶𝑌”〉(cgrG‘𝐺)〈“𝐸𝑦𝐹”〉) |
76 | 50 | eqcomd 2744 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐵 − 𝐴) = (𝐸 − 𝑥)) |
77 | 1, 16, 3, 12, 5, 7,
9, 33, 13, 15, 34, 35 | cgr3simp3 26787 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐶 − 𝐴) = (𝑦 − 𝑥)) |
78 | | cgrahl1.2 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
79 | 1, 3, 23, 4, 6, 8,
32, 19, 14, 21, 78 | cgrane2 27078 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
80 | 79 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐵 ≠ 𝐶) |
81 | 1, 2, 3, 5, 9, 33,
18, 12, 15, 34, 16, 7, 22, 13, 60, 75, 76, 77, 80 | tgfscgr 26833 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑌 − 𝐴) = (𝐹 − 𝑥)) |
82 | 1, 16, 3, 5, 18, 7,
22, 13, 81 | tgcgrcomlr 26745 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝐴 − 𝑌) = (𝑥 − 𝐹)) |
83 | 25 | ad3antrrr 726 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐴 ≠ 𝐵) |
84 | 1, 2, 3, 5, 7, 9, 11, 12, 13, 15, 16, 18, 20, 22, 31, 55, 82, 72, 83 | tgfscgr 26833 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → (𝑋 − 𝑌) = (𝐷 − 𝐹)) |
85 | 1, 3, 23, 4, 6, 8,
32, 19, 14, 21 | iscgra 27074 |
. . 3
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
86 | 78, 85 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
87 | 84, 86 | r19.29vva 3263 |
1
⊢ (𝜑 → (𝑋 − 𝑌) = (𝐷 − 𝐹)) |