MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrahl Structured version   Visualization version   GIF version

Theorem cgrahl 27188
Description: Angle congruence preserves null angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrahl.k 𝐾 = (hlG‘𝐺)
cgrahl.2 (𝜑𝐴(𝐾𝐵)𝐶)
Assertion
Ref Expression
cgrahl (𝜑𝐷(𝐾𝐸)𝐹)

Proof of Theorem cgrahl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgracol.p . . 3 𝑃 = (Base‘𝐺)
2 cgracol.i . . 3 𝐼 = (Itv‘𝐺)
3 cgrahl.k . . 3 𝐾 = (hlG‘𝐺)
4 cgracol.d . . . 4 (𝜑𝐷𝑃)
54ad3antrrr 727 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝑃)
6 simplr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝑃)
7 cgracol.f . . . 4 (𝜑𝐹𝑃)
87ad3antrrr 727 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐹𝑃)
9 cgracol.g . . . 4 (𝜑𝐺 ∈ TarskiG)
109ad3antrrr 727 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
11 cgracol.e . . . 4 (𝜑𝐸𝑃)
1211ad3antrrr 727 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝑃)
13 simpllr 773 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝑃)
14 simpr2 1194 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐷)
151, 2, 3, 13, 5, 12, 10, 14hlcomd 26965 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝑥)
161, 2, 3, 13, 5, 12, 10, 14hlne1 26966 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝐸)
17 simpr3 1195 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐹)
181, 2, 3, 6, 8, 12, 10, 17hlne1 26966 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑦𝐸)
19 cgracol.m . . . . . . . 8 = (dist‘𝐺)
20 eqid 2738 . . . . . . . 8 (cgrG‘𝐺) = (cgrG‘𝐺)
2110adantr 481 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐺 ∈ TarskiG)
22 cgracol.b . . . . . . . . 9 (𝜑𝐵𝑃)
2322ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐵𝑃)
24 cgracol.a . . . . . . . . 9 (𝜑𝐴𝑃)
2524ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐴𝑃)
26 cgracol.c . . . . . . . . 9 (𝜑𝐶𝑃)
2726ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐶𝑃)
2812adantr 481 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐸𝑃)
2913adantr 481 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝑥𝑃)
30 simpllr 773 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝑦𝑃)
31 simplr1 1214 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
321, 19, 2, 20, 21, 25, 23, 27, 29, 28, 30, 31cgr3swap12 26884 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → ⟨“𝐵𝐴𝐶”⟩(cgrG‘𝐺)⟨“𝐸𝑥𝑦”⟩)
33 simpr 485 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝐴 ∈ (𝐵𝐼𝐶))
341, 19, 2, 20, 21, 23, 25, 27, 28, 29, 30, 32, 33tgbtwnxfr 26891 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → 𝑥 ∈ (𝐸𝐼𝑦))
3534orcd 870 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐴 ∈ (𝐵𝐼𝐶)) → (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))
369ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐺 ∈ TarskiG)
3722ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐵𝑃)
3826ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐶𝑃)
3924ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐴𝑃)
4011ad4antr 729 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐸𝑃)
41 simpllr 773 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝑦𝑃)
4213adantr 481 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝑥𝑃)
43 simplr1 1214 . . . . . . . . 9 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
441, 19, 2, 20, 36, 39, 37, 38, 42, 40, 41, 43cgr3rotl 26888 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → ⟨“𝐵𝐶𝐴”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑥”⟩)
45 simpr 485 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝐶 ∈ (𝐵𝐼𝐴))
461, 19, 2, 20, 36, 37, 38, 39, 40, 41, 42, 44, 45tgbtwnxfr 26891 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → 𝑦 ∈ (𝐸𝐼𝑥))
4746olcd 871 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) ∧ 𝐶 ∈ (𝐵𝐼𝐴)) → (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))
48 cgrahl.2 . . . . . . . . 9 (𝜑𝐴(𝐾𝐵)𝐶)
491, 2, 3, 24, 26, 22, 9ishlg 26963 . . . . . . . . 9 (𝜑 → (𝐴(𝐾𝐵)𝐶 ↔ (𝐴𝐵𝐶𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))))
5048, 49mpbid 231 . . . . . . . 8 (𝜑 → (𝐴𝐵𝐶𝐵 ∧ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
5150simp3d 1143 . . . . . . 7 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
5251ad3antrrr 727 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
5335, 47, 52mpjaodan 956 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))
541, 2, 3, 13, 6, 12, 10ishlg 26963 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → (𝑥(𝐾𝐸)𝑦 ↔ (𝑥𝐸𝑦𝐸 ∧ (𝑥 ∈ (𝐸𝐼𝑦) ∨ 𝑦 ∈ (𝐸𝐼𝑥)))))
5516, 18, 53, 54mpbir3and 1341 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝑦)
561, 2, 3, 5, 13, 6, 10, 12, 15, 55hltr 26971 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝑦)
571, 2, 3, 5, 6, 8, 10, 12, 56, 17hltr 26971 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝐹)
58 cgracol.1 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
591, 2, 3, 9, 24, 22, 26, 4, 11, 7iscgra 27170 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
6058, 59mpbid 231 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
6157, 60r19.29vva 3266 1 (𝜑𝐷(𝐾𝐸)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  ⟨“cs3 14555  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  cgrGccgrg 26871  hlGchlg 26961  cgrAccgra 27168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-hlg 26962  df-cgra 27169
This theorem is referenced by:  cgracol  27189
  Copyright terms: Public domain W3C validator