![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cgrane4 | Structured version Visualization version GIF version |
Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
iscgra.p | β’ π = (BaseβπΊ) |
iscgra.i | β’ πΌ = (ItvβπΊ) |
iscgra.k | β’ πΎ = (hlGβπΊ) |
iscgra.g | β’ (π β πΊ β TarskiG) |
iscgra.a | β’ (π β π΄ β π) |
iscgra.b | β’ (π β π΅ β π) |
iscgra.c | β’ (π β πΆ β π) |
iscgra.d | β’ (π β π· β π) |
iscgra.e | β’ (π β πΈ β π) |
iscgra.f | β’ (π β πΉ β π) |
cgrahl1.2 | β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) |
Ref | Expression |
---|---|
cgrane4 | β’ (π β πΈ β πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgra.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | iscgra.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
3 | iscgra.k | . . . 4 β’ πΎ = (hlGβπΊ) | |
4 | simplr 767 | . . . 4 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π¦ β π) | |
5 | iscgra.f | . . . . 5 β’ (π β πΉ β π) | |
6 | 5 | ad3antrrr 728 | . . . 4 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΉ β π) |
7 | iscgra.e | . . . . 5 β’ (π β πΈ β π) | |
8 | 7 | ad3antrrr 728 | . . . 4 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΈ β π) |
9 | iscgra.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
10 | 9 | ad3antrrr 728 | . . . 4 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΊ β TarskiG) |
11 | simpr3 1193 | . . . 4 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β π¦(πΎβπΈ)πΉ) | |
12 | 1, 2, 3, 4, 6, 8, 10, 11 | hlne2 28430 | . . 3 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΉ β πΈ) |
13 | 12 | necomd 2993 | . 2 β’ ((((π β§ π₯ β π) β§ π¦ β π) β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) β πΈ β πΉ) |
14 | cgrahl1.2 | . . 3 β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) | |
15 | iscgra.a | . . . 4 β’ (π β π΄ β π) | |
16 | iscgra.b | . . . 4 β’ (π β π΅ β π) | |
17 | iscgra.c | . . . 4 β’ (π β πΆ β π) | |
18 | iscgra.d | . . . 4 β’ (π β π· β π) | |
19 | 1, 2, 3, 9, 15, 16, 17, 18, 7, 5 | iscgra 28633 | . . 3 β’ (π β (β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ© β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ))) |
20 | 14, 19 | mpbid 231 | . 2 β’ (π β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) |
21 | 13, 20 | r19.29vva 3211 | 1 β’ (π β πΈ β πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2937 βwrex 3067 class class class wbr 5152 βcfv 6553 β¨βcs3 14833 Basecbs 17187 TarskiGcstrkg 28251 Itvcitv 28257 cgrGccgrg 28334 hlGchlg 28424 cgrAccgra 28631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-s1 14586 df-s2 14839 df-s3 14840 df-hlg 28425 df-cgra 28632 |
This theorem is referenced by: cgracom 28646 cgratr 28647 cgraswaplr 28649 dfcgra2 28654 tgsas3 28681 tgasa1 28682 |
Copyright terms: Public domain | W3C validator |