Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cgrane4 | Structured version Visualization version GIF version |
Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
cgrahl1.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
Ref | Expression |
---|---|
cgrane4 | ⊢ (𝜑 → 𝐸 ≠ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgra.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | iscgra.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | iscgra.k | . . . 4 ⊢ 𝐾 = (hlG‘𝐺) | |
4 | simplr 769 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) | |
5 | iscgra.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
6 | 5 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
7 | iscgra.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
8 | 7 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
9 | iscgra.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
10 | 9 | ad3antrrr 730 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
11 | simpr3 1197 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦(𝐾‘𝐸)𝐹) | |
12 | 1, 2, 3, 4, 6, 8, 10, 11 | hlne2 26554 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐹 ≠ 𝐸) |
13 | 12 | necomd 2989 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐸 ≠ 𝐹) |
14 | cgrahl1.2 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
15 | iscgra.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
16 | iscgra.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
17 | iscgra.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
18 | iscgra.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
19 | 1, 2, 3, 9, 15, 16, 17, 18, 7, 5 | iscgra 26757 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
20 | 14, 19 | mpbid 235 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
21 | 13, 20 | r19.29vva 3243 | 1 ⊢ (𝜑 → 𝐸 ≠ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∃wrex 3054 class class class wbr 5030 ‘cfv 6339 〈“cs3 14295 Basecbs 16588 TarskiGcstrkg 26378 Itvcitv 26384 cgrGccgrg 26458 hlGchlg 26548 cgrAccgra 26755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-map 8441 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-card 9443 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-n0 11979 df-z 12065 df-uz 12327 df-fz 12984 df-fzo 13127 df-hash 13785 df-word 13958 df-concat 14014 df-s1 14041 df-s2 14301 df-s3 14302 df-hlg 26549 df-cgra 26756 |
This theorem is referenced by: cgracom 26770 cgratr 26771 cgraswaplr 26773 dfcgra2 26778 tgsas3 26805 tgasa1 26806 |
Copyright terms: Public domain | W3C validator |