MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrane4 Structured version   Visualization version   GIF version

Theorem cgrane4 28639
Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Baseβ€˜πΊ)
iscgra.i 𝐼 = (Itvβ€˜πΊ)
iscgra.k 𝐾 = (hlGβ€˜πΊ)
iscgra.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
iscgra.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
iscgra.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
iscgra.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
iscgra.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
iscgra.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
iscgra.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
cgrahl1.2 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
Assertion
Ref Expression
cgrane4 (πœ‘ β†’ 𝐸 β‰  𝐹)

Proof of Theorem cgrane4
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 iscgra.i . . . 4 𝐼 = (Itvβ€˜πΊ)
3 iscgra.k . . . 4 𝐾 = (hlGβ€˜πΊ)
4 simplr 767 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑦 ∈ 𝑃)
5 iscgra.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ 𝑃)
65ad3antrrr 728 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐹 ∈ 𝑃)
7 iscgra.e . . . . 5 (πœ‘ β†’ 𝐸 ∈ 𝑃)
87ad3antrrr 728 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐸 ∈ 𝑃)
9 iscgra.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
109ad3antrrr 728 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐺 ∈ TarskiG)
11 simpr3 1193 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝑦(πΎβ€˜πΈ)𝐹)
121, 2, 3, 4, 6, 8, 10, 11hlne2 28430 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐹 β‰  𝐸)
1312necomd 2993 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)) β†’ 𝐸 β‰  𝐹)
14 cgrahl1.2 . . 3 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
15 iscgra.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
16 iscgra.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
17 iscgra.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
18 iscgra.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
191, 2, 3, 9, 15, 16, 17, 18, 7, 5iscgra 28633 . . 3 (πœ‘ β†’ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrAβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ© ↔ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹)))
2014, 19mpbid 231 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ‘₯πΈπ‘¦β€βŸ© ∧ π‘₯(πΎβ€˜πΈ)𝐷 ∧ 𝑦(πΎβ€˜πΈ)𝐹))
2113, 20r19.29vva 3211 1 (πœ‘ β†’ 𝐸 β‰  𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  βˆƒwrex 3067   class class class wbr 5152  β€˜cfv 6553  βŸ¨β€œcs3 14833  Basecbs 17187  TarskiGcstrkg 28251  Itvcitv 28257  cgrGccgrg 28334  hlGchlg 28424  cgrAccgra 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-concat 14561  df-s1 14586  df-s2 14839  df-s3 14840  df-hlg 28425  df-cgra 28632
This theorem is referenced by:  cgracom  28646  cgratr  28647  cgraswaplr  28649  dfcgra2  28654  tgsas3  28681  tgasa1  28682
  Copyright terms: Public domain W3C validator