![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cgrahl2 | Structured version Visualization version GIF version |
Description: Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of [Schwabhauser] p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
cgrahl1.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
cgrahl1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
cgrahl2.1 | ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐹) |
Ref | Expression |
---|---|
cgrahl2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgra.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | iscgra.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | iscgra.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
4 | iscgra.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
6 | iscgra.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐴 ∈ 𝑃) |
8 | iscgra.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
10 | iscgra.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
11 | 10 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
12 | iscgra.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | 12 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
14 | iscgra.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
15 | 14 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
16 | cgrahl1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
17 | 16 | ad3antrrr 728 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑋 ∈ 𝑃) |
18 | simpllr 774 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) | |
19 | simplr 767 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) | |
20 | simpr1 1191 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉) | |
21 | simpr2 1192 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑥(𝐾‘𝐸)𝐷) | |
22 | iscgra.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
23 | 22 | ad3antrrr 728 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
24 | simpr3 1193 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦(𝐾‘𝐸)𝐹) | |
25 | cgrahl2.1 | . . . . . 6 ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐹) | |
26 | 25 | ad3antrrr 728 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑋(𝐾‘𝐸)𝐹) |
27 | 1, 2, 3, 17, 23, 15, 5, 26 | hlcomd 28480 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝐹(𝐾‘𝐸)𝑋) |
28 | 1, 2, 3, 19, 23, 17, 5, 15, 24, 27 | hltr 28486 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 𝑦(𝐾‘𝐸)𝑋) |
29 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 20, 21, 28 | iscgrad 28687 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
30 | cgrahl1.2 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | |
31 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 22 | iscgra 28685 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
32 | 30, 31 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
33 | 29, 32 | r19.29vva 3203 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 〈“cs3 14829 Basecbs 17183 TarskiGcstrkg 28303 Itvcitv 28309 cgrGccgrg 28386 hlGchlg 28476 cgrAccgra 28683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-s1 14582 df-s2 14835 df-s3 14836 df-trkgc 28324 df-trkgb 28325 df-trkgcb 28326 df-trkg 28329 df-cgrg 28387 df-hlg 28477 df-cgra 28684 |
This theorem is referenced by: cgratr 28699 dfcgra2 28706 tgasa1 28734 |
Copyright terms: Public domain | W3C validator |